929 resultados para Breakthrough curve
Resumo:
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.
Resumo:
In the proof of Lemma 3.1 in [1] we need to show that we may take the two points p and q with p ≠ q such that p+q+(b-2)g21(C′)∼2(q1+… +qb-1) where q1,…,qb-1 are points of C′, but in the paper [1] we did not show that p ≠ q. Moreover, we hadn't been able to prove this using the method of our paper [1]. So we must add some more assumption to Lemma 3.1 and rewrite the statements of our paper after Lemma 3.1. The following is the correct version of Lemma 3.1 in [1] with its proof.
Resumo:
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.
Resumo:
Prices of U.S. Treasury securities vary over time and across maturities. When the market in Treasurys is sufficiently complete and frictionless, these prices may be modeled by a function time and maturity. A cross-section of this function for time held fixed is called the yield curve; the aggregate of these sections is the evolution of the yield curve. This dissertation studies aspects of this evolution. ^ There are two complementary approaches to the study of yield curve evolution here. The first is principal components analysis; the second is wavelet analysis. In both approaches both the time and maturity variables are discretized. In principal components analysis the vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors (the principal components) are used to draw inferences about the yield curve evolution. ^ In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fundamental shifts (wavelets) that leave specified global properties invariant (average change and duration change). The hierarchies relate to the degree of localization with movements restricted to a single maturity at the base and general movements at the apex. Second generation wavelet techniques allow better adaptation of the model to economic observables. Statistically, the wavelet approach is inherently nonparametric while the wavelets themselves are better adapted to describing a complete market. ^ Principal components analysis provides information on the dimension of the yield curve process. While there is no clear demarkation between operative factors and noise, the top six principal components pick up 99% of total interest rate variation 95% of the time. An economically justified basis of this process is hard to find; for example a simple linear model will not suffice for the first principal component and the shape of this component is nonstationary. ^ Wavelet analysis works more directly with yield curve observations than principal components analysis. In fact the complete process from bond data to multiresolution is presented, including the dedicated Perl programs and the details of the portfolio metrics and specially adapted wavelet construction. The result is more robust statistics which provide balance to the more fragile principal components analysis. ^
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
Scopo di questo elaborato è affrontare lo studio di luoghi geometrici piani partendo dagli esempi più semplici che gli studenti incontrano nel loro percorso scolastico, per poi passare a studiare alcune curve celebri che sono definite come luoghi geometrici. Le curve nell'elaborato vengono disegnate con l'ausilio di Geogebra, con il quale sono state preparate delle animazioni da mostrare agli studenti. Di alcuni luoghi si forniscono dapprima le equazioni parametriche e successivamente, attraverso il teorema di eliminazione e il software Singular, viene ricavata l'equazione cartesiana.
Resumo:
Other
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.
Resumo:
La tesi si prefigge di definire la molteplicità dell’intersezione tra due curve algebriche piane. La trattazione sarà sviluppata in termini algebrici, per mezzo dello studio degli anelli locali. In seguito, saranno discusse alcune proprietà e sarà proposto qualche esempio di calcolo. Nel terzo capitolo, l’interesse volgerà all’intersezione tra una varietà e un’ipersuperficie di uno spazio proiettivo n-dimensionale. Verrà definita un’ulteriore di molteplicità dell’intersezione, che costituirà una generalizzazione di quella menzionata nei primi due capitoli. A partire da questa definizione, sarà possibile enunciare una versione estesa del Teorema di Bezout. L’ultimo capitolo focalizza l’attenzione nuovamente sulle curve piane, con l’intento di studiarne la topologia in un intorno di un punto singolare. Si introduce, in particolare, l’importante nozione di link di un punto singolare.
Resumo:
Nel presente lavoro è affrontato lo studio delle curve ellittiche viste come curve algebriche piane, più precisamente come cubiche lisce nel piano proiettivo complesso. Dopo aver introdotto nella prima parte le nozioni di Superfici compatte e orientabili e curve algebriche, tramite il teorema di classificazione delle Superfici compatte, se ne fornisce una preliminare classificazione basata sul genere della superficie e della curva, rispettivamente. Da qui, segue la definizione di curve ellittiche e uno studio più dettagliato delle loro pricipali proprietà, quali la possibilità di definirle tramite un'equazione affine nota come equazione di Weierstrass e la loro struttura intrinseca di gruppo abeliano. Si fornisce quindi un'ulteriore classificazione delle cubiche lisce, totalmente differente da quella precedente, che si basa invece sul modulo della cubica, invariante per trasformazioni proiettive. Infine, si considera un aspetto computazionale delle curve ellittiche, ovvero la loro applicazione nel campo della Crittografia. Grazie alla struttura che esse assumono sui campi finiti, sotto opportune ipotesi, i crittosistemi a chiave pubblica basati sul problema del logaritmo discreto definiti sulle curve ellittiche, a parità di sicurezza rispetto ai crittosistemi classici, permettono l'utilizzo di chiavi più corte, e quindi meno costose computazionalmente. Si forniscono quindi le definizioni di problema del logaritmo discreto classico e sulle curve ellittiche, ed alcuni esempi di algoritmi crittografici classici definiti su quest'ultime.
Resumo:
Nell'elaborato, dopo una breve descrizione di come vengono suddivise le macchine elettriche a seconda che vi siano o meno parti in movimento al loro interno, vengono esaminati inizialmente gli aspetti teorici che riguardano le macchine sincrone a poli lisci ed a poli salienti prendendo in esame anche quelli che sono i provvedimenti necessari a ridurre il contributo dei campi armonici di ordine superiore. Per questo tipo di macchine, spesso utilizzate in centrale per la pruduzione dell'energia elettrica, risultano di fondamentale importanza le curve a "V" e le curve di "Capability". Esse sono strumenti che permettono di valutare le prestazioni di tali macchine una volta che siano noti i dati di targa delle stesse. Lo scopo della tesi è pertanto quello di sviluppare un software in ambiente Matlab che permetta il calcolo automatico e parametrico di tali curve al fine di poter ottimizzare la scelta di una macchina a seconda delle esigenze. Nel corso dell'eleaborato vengono altresì proposti dei confronti su come varino tali curve, e pertanto i limiti di funzionamento ad esse associati, al variare di alcuni parametri fondamentali come il fattore di potenza, la reattanza sincrona o, nel caso di macchine a poli salienti, il rapporto di riluttanza. Le curve di cui sopra sono state costruite a partire da considerazioni fatte sul diagramma di Behn-Eschemburg per le macchine isotrope o sul diagramma di Arnold e Blondel per le macchine anisotrope.
Resumo:
Negli ultimi anni, è aumentato notevolmente l'interesse per piante e prodotti vegetali, e composti da essi derivati od estratti, in alternativa ai conservanti chimici per prevenire o ritardare lo sviluppo microbico negli alimenti. Questo deriva dalla percezione negativa, ormai diffusa a livello pubblico, nei confronti di sostanze di sintesi che sono ampiamente utilizzate come conservanti nell’industria alimentare. Sono stati effettuati diversi studi sull’attività antimicrobica di questi composti negli alimenti, anche se il loro utilizzo a livello industriale è limitato. Ciò dipende dalla difficile standardizzazione di queste sostanze, dovuta alla variabilità della matrice alimentare che ne può alterarne l’attività antimicrobica. In questa sperimentazione si sono utilizzati l’olio essenziale di Sateureja montana e l’estratto di Cotinus coggygria e sono state fatte delle prove preliminari, determinandone le componenti volatili tramite gas-cromatografia abbinata a microestrazione in fase solida. Sono stati selezionati un ceppo di Listeria monocytogenes (Scott A) e uno di Saccharomyces cerevisiae (SPA), e sono stati utilizzati per realizzare curve di morte termica in sistema modello e in sistema reale. Dai risultati ottenuti si può affermare che Satureja montana e Cotinus coggygria possono essere presi in considerazione come antimicrobici naturali da impiegare per la stabilizzazione di alimenti, nonché per ridurre l’entità dei trattamenti termici atti a salvaguardare le proprietà nutrizionali ed organolettiche di alimenti, come ad esempio succhi di frutta, garantendone la sicurezza e qualità microbiologica.