952 resultados para Brain injury
Resumo:
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.
Resumo:
BackgroundApproximately 7% of survivors from meningococcal meningitis (MM) suffer from neurological sequelae due to brain damage in the course of meningitis. The present study focuses on the role of matrix metalloproteinases (MMPs) in a novel mouse model of MM-induced brain damage.MethodsThe model is based on intracisternal infection of BALB/c mice with a serogroup C Neisseria meningitidis strain. Mice were infected with meningococci and randomised for treatment with the MMP inhibitor batimastat (BB-94) or vehicle. Animal survival, brain injury and host-response biomarkers were assessed 48 h after meningococcal challenge.ResultsMice that received BB-94 presented significantly diminished MMP-9 levels (p¿<¿0.01), intracerebral bleeding (p¿<¿0.01), and blood-brain barrier (BBB) breakdown (p¿<¿0.05) in comparison with untreated animals. In mice suffering from MM, the amount of MMP-9 measured by zymography significantly correlated with both intracerebral haemorrhage (p¿<¿0.01) and BBB disruption (p¿<¿0.05).ConclusionsMMPs significantly contribute to brain damage associated with experimental MM. Inhibition of MMPs reduces intracranial complications in mice suffering from MM, representing a potential adjuvant strategy in MM post-infection sequelae.
Resumo:
PRINCIPALS Throughout the world, falls are a major public health problem and a socioeconomic burden. Nevertheless there is little knowledge about how the injury types may be related to the aetiology and setting of the fall, especially in the elderly. We have therefore analysed all patients presenting with a fall to our Emergency Department (ED) over the past five years. METHODS Our retrospective data analysis comprised adult patients admitted to our Emergency Department between January 1, 2006, and December 31, 2010, in relation to a fall. RESULTS Of a total of 6357 patients 78% (n = 4957) patients were younger than 75 years. The main setting for falls was patients home (n = 2239, 35.3%). In contrast to the younger patients, the older population was predominantly female (56.3% versus 38.6%; P < 0.0001). Older patients were more likely to fall at home and suffer from medical conditions (all P < 0.0001). Injuries to the head (P < 0.0001) and to the lower extremity (P < 0.019) occurred predominantly in the older population. Age was the sole predictor for recurrent falls (OR 1.2, P < 0.0001). CONCLUSION Falls at home are the main class of falls for all age groups, particularly in the elderly. Fall prevention strategies must therefore target activities of daily living. Even though falls related to sports mostly take place in the younger cohort, a significant percentage of elderly patients present with falls related to sporting activity. Falls due to medical conditions were most likely to result in mild traumatic brain injury.
Resumo:
Mechanical injury of the CNS frequently results from accidents but also occurs in the course of neurosurgical interventions. A great variety of anatomical and physiological changes have been described to evolve after a brain trauma yet only little is known about processes that occur during a trauma. In the present study, I obtained whole-cell patch clamp recordings from pyramidal cells in hippocampal slice cultures while mechanically lesioning the CA3 area. Electrophysiological analysis revealed that traumatic injury massively increased excitatory and inhibitory synaptic activity in the entire CA3 region. Cutting the CA3 region induced highly rhythmic excitatory postsynaptic currents (EPSCs) that reached frequencies of around 70 Hz. Blocking voltage-dependent sodium channels with tetrodotoxin prevented the increase in synaptic activity and injury-induced neurotransmitter release in CA3 remote from the lesion site. With fast synaptic transmission blocked only neurons in the immediate vicinity of a lesion depolarized and fired action potentials upon mechanical damage. I hence suggest that mechanical injury damages the membrane and induces action potential firing in only a small population of neurons. This activity is then propagated throughout the undamaged CA3 network inducing highly rhythmic discharges. Thus mechanical brain injury initiates immediate functional changes that exceed the lesion site.
Resumo:
Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.
Resumo:
The ventricular system is a critical component of the central nervous system (CNS) that is formed early in the developmental stages and remains functional through the lifetime. Changes in the ventricular system can be easily discerned via neuroimaging procedures and most of the time it reflects changes in the physiology of the CNS. In this study we attempted to identify specific genes associated with variation in ventricular volume in humans. Methods. We conducted a genome wide association (GWA) analysis of the volume of the lateral ventricles among 1605 individuals of European ancestry from two community based cohorts, the Genetics of Microangiopathic Brain Injury (GMBI; N=814) and Atherosclerosis Risk in Communities (ARIC; N=791). Significant findings from the analysis were tested for replication in both the cohorts and then meta-analyzed to get an estimate of overall significance. Results. In our GWA analyses, no single nucleotide polymorphism (SNP) reached a genome-wide significance of p<10−8. There were 25 SNPs in GMBI and 9 SNPs in ARIC that reached a threshold of p<10 −5. However, none of the top SNPs from each cohort were replicated in the other. In the meta-analysis, no SNP reached the genome-wide threshold of 5×10−8, but we identified five novel SNPs associated with variation in ventricular volume at the p<10 −5 level. Strongest association was for rs2112536 in an intergenic region on chromosome 5q33 (Pmeta= 8.46×10−7 ). The remaining four SNPs were located on chromosome 3q23 encompassing the gene for Calsyntenin-2 (CLSTN2). The SNPs with strongest association in this region were rs17338555 (Pmeta= 5.28×10 −6), rs9812091 (Pmeta= 5.89×10−6 ), rs9812283 (Pmeta= 5.97×10−6) and rs9833213 (Pmeta= 6.96×10−6). Conclusions. This GWA study of ventricular volumes in the community-based cohorts of European descent identifies potential locus on chromosomes 3 and 5. Further characterization of these loci may provide insights into pathophysiology of ventricular involvement in various neurological diseases.^
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differenti- ated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specif- ically, the direct relations between brain and spinal cord tis- sue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic- based damage criteria, simulated function-based damage cri- teria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus provid- ing a link between mechanical trauma and subsequent func- tional deficits.
Resumo:
Traumatic Brain Injury -TBI- -1- is defined as an acute event that causes certain damage to areas of the brain. TBI may result in a significant impairment of an individuals physical, cognitive and psychosocial functioning. The main consequence of TBI is a dramatic change in the individuals daily life involving a profound disruption of the family, a loss of future income capacity and an increase of lifetime cost. One of the main challenges of TBI Neuroimaging is to develop robust automated image analysis methods to detect signatures of TBI, such as: hyper-intensity areas, changes in image contrast and in brain shape. The final goal of this research is to develop a method to identify the altered brain structures by automatically detecting landmarks on the image where signal changes and to provide comprehensive information to the clinician about them. These landmarks identify injured structures by co-registering the patient?s image with an atlas where landmarks have been previously detected. The research work has been initiated by identifying brain structures on healthy subjects to validate the proposed method. Later, this method will be used to identify modified structures on TBI imaging studies.
Resumo:
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits
Resumo:
Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury.
Resumo:
Morbidity and mortality from head trauma is highest among children. No animal model mimicking traumatic brain injury in children has yet been established, and the mechanisms of neuronal degeneration after traumatic injury to the developing brain are not understood. In infant rats subjected to percussion head trauma, two types of brain damage could be characterized. The first type or primary damage evolved within 4 hr and occurred by an excitotoxic mechanism. The second type or secondary damage evolved within 6–24 hr and occurred by an apoptotic mechanism. Primary damage remained localized to the parietal cortex at the site of impact. Secondary damage affected distant sites such as the cingulate/retrosplenial cortex, subiculum, frontal cortex, thalamus and striatum. Secondary apoptotic damage was more severe than primary excitotoxic damage. Morphometric analysis demonstrated that the N-methyl-d-aspartate receptor antagonists 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonate and dizocilpine protected against primary excitotoxic damage but increased severity of secondary apoptotic damage. 2-Sulfo-α-phenyl-N-tert-butyl-nitrone, a free radical scavenger, did not affect primary excitotoxic damage but mitigated apoptotic damage. These observations demonstrate that apoptosis and not excitotoxicity determine neuropathologic outcome after traumatic injury to the developing brain. Whereas free radical scavengers may prove useful in therapy of head trauma in children, N-methyl-d-aspartate antagonists should be avoided because of their propensity to increase severity of apoptotic damage.
Resumo:
Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a member of the calcitonin gene-related peptide (CGRP) family. Using the rat focal stroke model of middle cerebral artery occlusion (MCAO), we determined that AM mRNA expression was significantly increased in the ischemic cortex up to 17.4-fold at 3 h post-MCAO (P < 0.05) and 21.7-fold at 6 h post-MCAO (P < 0.05) and remained elevated for up to 15 days (9.6-fold increase; P < 0.05). Immunohistochemical studies localized AM to ischemic neuronal processes, and radioligand (125I-labeled CGRP) displacement revealed high-affinity (IC50 = 80.3 nmol) binding of AM to CGRP receptors in brain cortex. The cerebrovascular function of AM was studied using synthetic AM microinjected onto rat pial vessels using a cranial window or applied to canine basilar arteries in vitro. AM, applied abluminally, produced dose-dependent relaxation of preconstricted pial vessels (P < 0.05). Intracerebroventricular (but not systemic) AM administration at a high dose (8 nmol), prior to and after MCAO, increased the degree of focal ischemic injury (P < 0.05). The ischemia-induced expression of both AM mRNA and peptide in ischemic cortical neurons, the demonstration of the direct vasodilating effects of the peptide on cerebral vessels, and the ability of AM to exacerbate ischemic brain damage suggests that AM plays a significant role in focal ischemic brain injury.
Resumo:
Spinal cord injury (SCI) and traumatic brain injury (TBI) are two potentially devastating conditions alone; when they co-occur in an individual they can be doubly so. The role of hope in rehabilitating oneself and recovering emotionally is examined in this paper. More specifically, Snyder's Model of Hope (1991) is examined as a tool that can aid in the rehabilitative process and help treatment providers, their patients, and the families of patients keep hope alive during a time of physical and emotional upheaval. This paper further examines the roles of hope in a rehabilitation program at Craig Hospital, a private, non-profit hospital dedicated exclusively to the rehabilitation of SCIs and TBIs and designated as a TBI and SCI Model Systems Center.
Resumo:
Erythropoietin (EPO) has recently been shown to exert important cytoprotective and anti-apoptotic effects in experimental brain injury and cisplatin-induced nephrotoxicity. The aim of the present study was to determine whether EPO administration is also renoprotectivein both in vitro and in vivo models ofischaemic acute renal failure Methods. Primary cultures of human proximal tubule cells (PTCs) were exposed to either vehicle or EPO (6.25–400 IU/ml) in the presence of hypoxia (1% O2), normoxia (21% O2) or hypoxia followed by normoxia for up to 24 h. The end-points evaluated included cell apoptosis (morphology and in situ end labelling [ISEL], viability [lactate dehydrogenase (LDH release)], cell proliferation [proliferating cell nuclear antigen (PCNA)] and DNA synthesis (thymidine incorporation). The effects of EPO pre-treatment (5000 U/kg) on renal morphology and function were also studied in rat models of unilateral and bilateral ischaemia–reperfusion (IR) injury. Results. In the in vitro model, hypoxia (1% O2) induced a significant degree of PTC apoptosis, which was substantially reduced by co-incubation with EPO at 24 h (vehicle 2.5±0.5% vs 25 IU/ml EPO 1.8±0.4% vs 200 IU/ml EPO 0.9±0.2%, n = 9, P
Resumo:
The coexistance of a swallowing impairment can severely impact upon the medical condition and recovery of a child with traumatic brain injury [ref.(1): Journal of Head Trauma Rehabilitation 9 (1) (1994) 43]. Limited data exist on the progression or outcome of dysphagia in the paediatric population with brainstem injury. The present prospective study documents the resolution of dysphagia in a 14-year-old female post-brainstem injury using clinical, radiological and endoscopic evaluations of swallowing. The subject presented with a pattern of severe oral-motor and oropharyngeal swallowing impairment post-injury that resolved rapidly for the initial 12 weeks, slowed to gradual progress for weeks 12-20, and then plateaued at 20 weeks post-injury. Whilst a clinically functional swallow was present at 10 months post-injury, radiological examination revealed a number of residual physiological impairments, reduced swallowing efficiency, and reduced independence for feeding, indicating a potential increased risk for aspiration. The data highlight the need for early and continued evaluation and intensive treatment programs, to focus on the underlying physiological swallowing impairment post-brainstem injury, and to help offset any potential deleterious effects of aspiration that may affect patient recovery, such as pneumonia. (C) 2003 Elsevier Ltd. All rights reserved.