907 resultados para Brain -- Nervous system
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study presents data on myosin Va localization in the central nervous system of rainbow trout. We demonstrate, via immunoblots and immunocytochemistry, the expression of myosin Va in several neuronal populations of forebrain, midbrain, hindbrain and spinal cord. The neuronal populations that express myosin Va in trout constitute a very diverse group that do not seem to have many specific similarities such as neurotransmitters used, cellular size or length of their processes. The intensity of the immunoreactivity and the number of immunoreactive cells differ from region to region. Although there is a broad distribution of myosin Va, it is not present in all neuronal populations. This result is in agreement with a previous report, which indicated that myosin Va is approximately as abundant as conventional myosin II and kinesin, and it is broadly involved in neuronal motility events such as axoplasmatic transport. Furthermore, this distribution pattern is in accordance with what was shown in rats and mice; it indicates phylogenetic maintenance of the myosin Va main functions.
Resumo:
Um eqüino macho, com 10 anos, Mangalarga, apresentou uma infecção por um nematódeo rabditiforme no cérebro. Os sinais clínicos limitaram-se ao fato de o animal andar em círculos e apresentar paralisia do lado direito. O exame histológico do cérebro revelou acentuada gliose e discreto edema intersticial. O infiltrado inflamatório mononuclear perivascular era composto por poucas camadas de linfócitos, plasmócitos, macrófagos e raros eosinófilos, associados aos nematódeos rabditiformes. Áreas de malácia e trajetos com esferóides axonais são vistos ao redor de vasos e do agente etiológico, sendo mais evidentes na substância branca. Nas meninges, o infiltrado inflamatório foi moderado e associado a parasitas perivasculares. A identificação do nematódeo foi baseada no exame histológico do cérebro do cavalo.
Resumo:
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Resumo:
The effect of protein-calorie malnutrition during gestation on the brain amino acids of rat pups was studied following nutritional recovery during lactation. The brain amino acids of rat pups born to dam rats malnourished during gestation were studied after these rat pups received proper nutrition during lactation. Pregnant rats were fed a 1% protein diet with total caloric intake restricted to half that of controls. After birth, the offspring of rats fed on deficient diets were nurtured up to the 28th day postpartum by foster mothers receiving adequate diets. At this time, the offspring were killed. The control group consisted of offspring from pregnant rats fed a diet with adequate protein (21%) and calories during the entire gestation and lactation period. Quantitation of brain amino acids in the pups at 28 days postpartum showed lower concentrations of essential and nonessential amino acids in the rats malnourished during gestation. Concentrations of histidine, glycine, and α-aminobutyric acids were all reduced. These findings demonstrate that the brains of rat pups malnourished during gestation show persistent decreases in specific brain amino acids after adequate postpartum nutrition.
Resumo:
Apert Syndrome, also called acrocephalosyndactylia type 1, is characterized by craniostenosis with early fusion of sutures of the vault and/ or cranial base, associated to mid-face hypoplasia, symmetric syndactylia of the hands and feet and other systemic malformations. CNS malformations and intracranial hypertension are frequently observed in these patients. Early surgical treatment aims to minimize the deleterious effects of intracranial hypertension. Fronto-orbital advancement, the usual surgical technique, increases the intracranial volume and improves the disposition of encephalic structures previously deformed by a short skull. This study analyzes CNS alterations revealed by magnetic resonance in 18 patients presenting Apert Syndrome, and the conformational alterations in the encephalic structures after surgical treatment. The patients' age in February 2001 ranged from 14 to 322 months (m=107). Image study included brain magnetic resonance showing ventricular enlargement in five cases (27.8%), corpus callosum hypoplasia in five cases (27.8%), septum pellucidum hypoplasia in five cases (27.8%), cavum vergae in two cases (11.1%) and, arachnoid cyst in the posterior fossa in two cases (11.1%). Absence of CNS alterations was noted in 44.4% of cases. A corpus callosum morphologic index was established by dividing its height by its length, which revealed values that ranged from 0.4409 to 1.0237. The values of this index were correlated to the occurrence or absence of surgical treatment (p=0.012; t=2.83). Data analysis allowed the conclusion that the corpus callosum morphologic measure quantified the conformational alterations of the cerebral structures determined by the surgical treatment.
Resumo:
As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.
Resumo:
Insulin is an important modulator of growth and metabolic function in the central nervous system. The aim of this study was to investigate the influence of swimming physical training (at 32̈±1̈C, 1 hr/day, 5 days/week, with an overload equivalent to 5% of the body weight, for 4 weeks) on brain insulin concentrations in alloxan induced type 1 diabetic rats. Training attenuated hyperglycemia but had no effect on insulinemia in diabetic rats. Hematocrit and blood albumin values remained without changes. Brain insulin did not change in diabetic rats. However, physical training increased the concentration in both control and diabetic rats. It is concluded that in the present experimental conditions, diabetes had no influence on brain insulin, however moderate physical training increased the hormone in both control and diabetic animals.
Resumo:
Some modifying factors may determine the risk of brain tumors. Until now, it could not be attempted to identify people at risk and also to improve significantly disease progression. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. Despite of these treatments, the prognosis for patients is poor. In this review, we highlight general aspects concerning genetic alterations in brain tumors, namely astrocytomas, glioblastomas, oligodendrogliomas, medulloblastomas and ependymomas. The influence of these genetic alterations in patients' prognosis is discussed. Mutagen sensivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immunosuppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well established that there is association between brain tumor risk and mutagen sensivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immunosuppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed in peripheral lymphocytes from brain tumor patients. © 2011 Bentham Science Publishers Ltd.
Resumo:
Several synthetic substances are used in agricultural areas to combat insect pests; however, the indiscriminate use of these products may affect nontarget insects, such as bees. In Brazil, one of the most widely used insecticides is imidacloprid, which targets the nervous system of insects. Therefore, the aim of this study was to evaluate the effects of chronic exposure to sublethal doses of imidacloprid on the brain of the Africanized Apis mellifera. The organs of both control bees and bees exposed to insecticide were subjected to morphological, histochemical and immunocytochemical analysis after exposure to imidacloprid, respectively, for 1, 3, 5, 7, and 10 days. In mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 and in optic lobes of bees exposed to imidacloprid concentrations of LD 50/10, LD50/100, and LD50/50, we observed the presence of condensed cells. The Feulgen reaction revealed the presence of some cells with pyknotic nuclei, whereas Xylidine Ponceau stain revealed strongly stained cells. These characteristics can indicate the occurrence of cell death. Furthermore, cells in mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 appeared to be swollen. Cell death was confirmed by immunocytochemical technique. Therefore, it was concluded that sublethal doses of imidacloprid have cytotoxic effects on exposed bee brains and that optic lobes are more sensitive to the insecticide than other regions of the brain. © 2013 Springer Science+Business Media New York.
Resumo:
Aberrant methylation of CpG islands located in promoter regions represents one of the major mechanisms for silencing cancer-related genes in tumor cells. We determined the frequency of aberrant CpG island methylation for several tumor-associated genes: DAPK, MGMT, p14ARF, p16INK4a, TP73, RB1 and TIMP-3 in 55 brain tumors, consisting of 26 neuroepithelial tumors, 6 peripheral nerve tumors, 13 meningeal tumors and 10 metastatic brain tumors. Aberrant methylation of at least one of the seven genes studied was detected in 83.6% of the cases. The frequencies of aberrant methylation were: 40% for p14ARF, 38.2% for MGMT, 30.9% for, p16INK4a, 14.6% for TP73 and for TIMP-3, 12.7% for DAPK and 1.8% for RB1. These data suggest that the hypermethylation observed in the genes p14ARF, MGMT and p16INK4a is a very important event in the formation or progression of brain tumors, since the inactivation of these genes directly interferes with the cell cycle or DNA repair. The altered methylation rate of the other genes has already been reported to be related to tumorigenesis, but the low methylation rate of RB1 found in tumors in our sample is different from that so far reported in the literature, suggesting that perhaps hypermethylation of the promoter is not the main event in the inactivation of this gene. Our results suggest that hypermethylation of the promoter region is a very common event in nervous system tumors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The endopeptidase 22.19 (EC 3.4.22.19) has been associated with the metabolism of neuropeptides by its ability to convert small enkephalin-containing peptides (8 to 13 amino acids) into enkephalins. In addition, this enzyme cleaves the Arg8-Arg9 bond of neurotensin and the Phe5-Ser6 bond of bradykinin. We analyzed the circadian variation of endopeptidase 22.19 in the whole and individual areas of the rat brain. Endopeptidase 22.19 activity was analyzed by high-performance liquid chromatography (HPLC) using bradykinin as an operative substrate. Enzymatic specific activities were analyzed by rhythmometric methods and indicate a circadian fluctuation of endopeptidase 22.19 specific activity (mU of enzyme/mg of protein) in the whole brain [p < 0.001, mesor (M) = 7.62, amplitude (A) = 2.89, and acrophase (phi) = 23:08 h], striatum (p < 0.001, M = 2.92, A = 0.62, phi-23:03 h), hypothalamus (p < 0.001, M = 3.15, A = 0.86, phi-01:12 h), periaqueductal gray matter (p < 0.005, M = 2.62, A = 0.34, phi = 22:35 h), and cerebellum (p < 0.0 14, M = 4.27, A = 0.88, phi = 17:12 h). The circadian rhythmicity in endopeptidase 22.19 specific activity suggests that light may have an effect on the peptidase activity in whole brain and in areas of the central nervous system and may be essential for the mechanisms of circadian fluctuations of neuropeptides in the brain.