977 resultados para Botryosphaeria rhodina isolates
Resumo:
An experiment was designed to assess the occurrence of multiple antibiotic resistances in Vibrio sp from different (brackish and marine) environments. Water samples from nine marine landing sites and two coastal inland aquaculture farms were screened for the Vibrio spp and assessed their resistance to twenty-two different antibiotics, which are commonly encountered in the aquatic ecosystem. Tissue samples (shrimp, mussel and sepia) were tested from the sampling site with highest antibiotic resistance. Of the total 119 Vibrio isolates, 16. 8% were susceptible to all antibiotics. Of the resistant (83.19%) Vibrio strains, 30.3% were resistant against three antibiotics, 55.5% were resistant against 4-10 antibiotics, 14.14% were resistant against more than 10 antibiotics and 54% have shown multiple antibiotics resistance (MAR). Antibiotic resistance index was higher in Coastal 3, 6, Aqua farm 2 in isolates from water samples and all the tissues tested. Interestingly, incidence of antibiotic resistance in isolates from water samples was comparatively lower in aquaculture farms than that observed in coastal areas. Highest incidence of antibiotic resistance was evident against Amoxycillin, Ampicillin, Carbencillin and Cefuroxime followed by Rifampicin and Streptomycin and lowest against Chloramphenicol, Tetracycline, Chlortetracycline, Furazolidone, Nalidixic acid, Gentamycin Sulphafurazole, Trimethoprirn, Neomycin and Amikacin irrespective of the sampling sites. Results from various tissue samples collected from the sites of highest antibiotic resistance indicated that antibiotic resistance Vibrio spp collected from fish and tissue samples were higher than that of water samples. Overall results indicated that persistent use of antibiotics against diseases in human beings and other life forms may pollute the aquatic system and their impact on developing antibiotic resistant Vibrio sp may be a serious threat in addition to the use of antibiotics in aquaculture farms.
Resumo:
The thesis is comprised of seven chapters. Chapter 1 gives a general introduction to marine actinomycetes; Chapter 2 gives an account on the morphological, biochemical and physiological characterization of marine actinomycetes. Comprehensive description of molecular identification and phylogenetic analysis of actinomycetes is dealt with in Chapter 3. The antimicrobial property with special reference to antivibrio activity is described in Chapter 4. Chapter 5 explores the melanin production ability of marine actinomycetes, characterization of melanin and evaluation of its bioactivity. Chapter 6 illustrates the study on chitinolytic Streptomyces as antifungal and insecticidal agents. Summary and Conclusion of the study is presented in Chapter 7, followed by References and Appendices.The present study provides an insight into the various actinomycetes occurring in the sediments of Arabian Sea and Bay of Bengal. Streptomyces was found to be the dominant group followed by Nocardiopsis. Eventhough generic level identification is possible by traditional phenotypic methods, species level identification necessitate a polyphasic approach including both phenotypic and genotypic characterization. Antibiotic production coupled with biogranulation property helped in the effective utilization of the actinomycetes for the control of vibrios. Melanin from Streptomyces bikiniensis was proved to be a promising antioxidant and photoprotectant. Marine actinomycetes were found to be a good source of hydrolytic enzymes and the chitinolytic isolates could be explored as biocontrol agents in terms of antifungal and insecticidal property. The present study explored the potential of marine actinomycetes especially Streptomycetes as a promising source of bioactive molecules for application in aquaculture and pharmaceutical industry.
Resumo:
In the present study diversity of E. coli in the water samples of Cochin estuary were studied for a period of 3 years ranging from January 2010- December 2012. The stations were selected based on the closeness to satellite townships and waste input. Two of the stations (Chitoor and Thevara) were fixed upstream, two in the central part of the estuary namely Bolgatty and Off Marine Science Jetty, and one at the Barmouth. Diversity was assessed in terms of serotypes, phylogenetic groups and genotypes. Two groups of seafood samples such as fish and shellfish collected from the Cochin estuary were used for isolation of E. coli. One hundred clinical E. coli isolates were collected from one public health centre, one hospital and five medical labs in and around Cochin City, Kerala. From our results it was clear that pathogen cycling is occurring through food, water and clinical sources. Pathogen cycling through food is very common and fish and shellfish that harbour these strains might pose potential health risk to consumer. Estuarine environment is a melting pot for various kinds of wastes, both organic and inorganic. Mixing up of waste water from various sources such as domestic, industries, hospitals and sewage released into these water bodies resulting in the co-existence of E. coli from various sources thus offering a conducive environment for horizontal gene transfer. Opportunistic pathogens might acquire genes for drug resistance and virulence turning them to potential pathogens. Prevalence of ExPEC in the Cochin estuary, pose threat to people who use this water for fishing and recreation. Food chain also plays an important role in the transit of virulence genes from the environments to the human. Antibiotic resistant E. coli are widespread in estuarine water, seafood and clinical samples, for reasons well known such as indiscriminate use of antibiotics in animal production systems, aquaculture and human medicine. Since the waste water from these sources entering the estuary provides selection pressure to drug resistant mutants in the environment. It is high time that the authorities concerned should put systems in place for monitoring and enforcement to curb such activities. Microbial contamination can limit people’s enjoyment of coastal waters for contact recreation or shellfish-gathering. E. coli can make people sick if they are present in high levels in water used for contact recreation or shellfish gathering. When feeding, shellfish can filter large volumes of seawater, so any microorganisms present in the water become accumulated and concentrated in the shellfish flesh. If E. coli contaminated shellfish are consumed the impact to human health includes gastroenteritis, urinary tract infections (UTIs), and bacteraemia. In conclusion, the high prevalence of various pathogenic serotypes and phylogenetic groups, multidrug-resistance, and virulence factor genes detected among E. coli isolates from stations close to Cochin city is a matter of concern, since there is a large reservoir of antibiotic resistance genes and virulence traits within the community, and that the resistance genes and plasmid-encoded genes for virulence were easily transferable to other strains. Given the severity of the clinical manifestations of the disease in humans and the inability and/or the potential risks of antibiotic administration for treatment, it appears that the most direct and effective measure towards prevention of STEC and ExPEC infections in humans and ensuring public health may be considered as a priority.
Resumo:
Three concentrations of Xenorhabdus nematophila and Xenorhabdus spp., (4x10(5,) 4x10(6,) 4x10(7) cells/ml) were evaluated in the laboratory and in pot experiments to test their antagonistic effects on Fusarium oxysporum f.sp., lycopersici. All concentrations effectively inhibited its growth on agar plates. In soil under greenhouse conditions treatments with each bacterium at 4x10(7) cells/ml reduced the disease incidence of tomato by up to 40.38 and 47.54% respectively and there were significant increases of plant biomass by 198 and 211% respectively. The rhizosphere population of Fusarium oxysporum f.sp., lycopersici was reduced by 97%. The Xenorhabdus spp., was comparatively more effective than X. nematophila.
Resumo:
The level of Pasteuria penetrans spore attachment on juveniles of Meloidogyne javanica, M. incognita and M. arenaria was greater when the nematodes were exposed to spores of a population that had been multiplied on a mixture of these Meloidogyne species than where Pasteuria was multiplied on a single nematode population. When tomato plants were inoculated with M. javanica, M. incognita and M. arenaria juveniles encumbered with spores produced on different Meloidogyne species, tile incidence of root galling and productivity of egg-masses were less, and this was also reflected in increased infection of females of M. javanica, M. incognita and M. arenaria compared to the infection by Pasteuria populations produced on single nematode species and therefore assumed to have a narrower genetic base.
Resumo:
The recent decline in the effectiveness of some azole fungicides in controlling the wheat pathogen Mycosphaerella graminicola has been associated with mutations in the CYP51 gene encoding the azole target, the eburicol 14 alpha-demethylase (CYP51), an essential enzyme of the ergosterol biosynthesis pathway. In this study, analysis of the sterol content of M. graminicola isolates carrying different variants of the CYP51 gene has revealed quantitative differences in sterol intermediates, particularly the CYP51 substrate eburicol. Together with CYP51 gene expression studies, these data suggest that mutations in the CYP51 gene impact on the activity of the CYP51 protein.
Resumo:
In the present study, a genomic analysis of full VP1 sequence region of 15 clinical re-isolates (14 healthy vaccinees and one bone marrow tumor patient) was conducted, aiming to the identification of mutations and to the assessment of their impact on virus fitness, providing also insights relevant with the natural evolution of Sabin strains. Clinical re-isolates were analyzed by RT-PCR, sequencing and computational analysis. Some re-isolates were characterized by an unusual mutational pattern in which non-synonymous mutations outnumbered the synonymous ones. Furthermore, the majority of amino-acid substitutions were located in the capsid exterior, specifically in N-Ags, near N-Ags and in the north rim of the canyon. Also mutations, which are well-known determinants of attenuation, were identified. The results of this study propose that some re-isolates are characterized by an evolutionary pattern in which non-synonymous mutations with a direct phenotypic impact on viral fitness are fixed in viral genomes, in spite of synonymous ones with no phenotypic impact on viral fitness. Results of the present retrospective characterization of Sabin clinical re-isolates, based on the full VP1 sequence, suggest that vaccine-derived viruses may make their way through narrow breaches and may evolve into transmissible pathogens even in adequately immunized populations. For this reason increased poliovirus laboratory surveillance should be permanent and full VP1 sequence analysis should be conducted even in isolates originating from healthy vaccinees.
Resumo:
Recombination in Poliovirus vaccine strains is a very frequent phenomenon. In this report 23 polio/Sabin strains isolated from healthy vaccinees or from VAPP patients after OPV administration, were investigated in order to identify recombination sites from 2C to 3D regions of the poliovirus genome. RT-PCR, followed by Restriction Fragment Length Polymorphism (RFLP) screening analysis were applied in four distant genomic regions (5' UTR, VP1, 2C and 3C-3D) in order to detect any putative recombinant. The detected recombinants were sequenced from 2C to the end of the genome (3' UTR) and the exact recombination sites were determined with computational analysis. Five of the 23 isolated strains were recombinant in one genomic region, two of them in 2C, isolates EP16:S3/S2, EP23:S3/S1, two in 3D isolates EP6:S2/S1, EP12:S2/S1 and one in 3A isolate EP9:S2/Sl. Point mutations were found in strains EP3, EP6, EP9 and EP12. Recombination specific types and sites re-occurrence along with point mutations are discussed concerning the polioviruses evolution.
Resumo:
Artificial pod inoculation was used to compare the relative aggressiveness of seven Colombian isolates of Moniliophthora roreri (the causal agent of moniliasis or frosty pod disease), representing four major genetic groupings of the pathogen in cacao (cocoa), when applied to five diverse cacao genotypes (ICS-1, ICS-95, TSH-565, SCC-61 and CAP-34) at La Suiza Experimental Farm, Santander Department, Colombia. The following variables were evaluated 9 weeks after inoculation of 2- to 3-month-old pods with spore suspensions (1.2 x 10(5) spores mL(-1)): (i) disease incidence (DI); (ii) external severity (ES); and (iii) internal severity (IS). IS was found to be of greatest value in classifying the reaction of the host genotype against M. roreri. Genetic variation reported between isolates and cacao genotypes was not matched by similar diversity in their aggressiveness. All isolates were generally highly aggressive against most cacao genotypes, with only two isolates showing reduced IS and ES reactions. There was considerable variation between clones in the IS and ES scores, but one cultivated clone (ICS-95) displayed a significant level of resistance against all seven isolates. This clone may be useful in cacao breeding initiatives for resistance to moniliasis of cacao.
Resumo:
The antagonistic activities of six selected fungal isolates against Armilloria mellea were studied on two different concentrations of three media, on fungicides-amended malt extract agar (MEA) medium, and in glasshouse pots filled with John Innes No.2 compost and natural field soil. Trichoderma hamatum isolate Tham1 was found the most effective in reducing Armillaria growths on both the low and high concentrations of malt extract, potato dextrose and V-8 juice in MEA, potato dextrose agar (PDA) and V-8 juice agar (VJA), respectively, followed by T. harzianum isolate Th2 and T. viride isolate Tv3. Neither dose rate (200 or 2000 mg l(-1)) of fenpropidin allowed any growth of Armillaria on MEA, while that of the antagonists was also completely inhibited or greatly restricted. However, both dose rates of fosetyl-A1 allowed the growth of Armillaria and almost all the antagonists. Data on colony diameters of Armillaria showed Tham1 as the most effective antagonist along with Th2, Th23 and Tv3. Tham1 was also found the most effective in protecting hazel billets from colonization by Armillaria, followed by Th2 and Th23. Compared with 7.1 colonized billets in the inoculated controls, only 1.3, 2.6 and 2.7 billets (out of ten) were colonized, respectively, when protected with these antagonists. The results indicate that the Trichoderma isolates are able to maintain their antagonistic effects on A. mellea under a variety of nutritional, chemical and edaphic regimes. More investigations are needed to develop a system of control for the disease with these potential antagonists.
Resumo:
Fifteen strains of an anaerobic, catalase-negative, gram-positive diphtheroid-shaped bacterium recovered from human sources were characterized by phenotypic and molecular chemical and molecular genetic methods. The unidentified bacterium showed some resemblance to Actinomyces species and related taxa, but biochemical testing, polyacrylamide gel electrophoresis analysis of whole-cell proteins, and amplified 16S ribosomal DNA restriction analysis indicated the strains were distinct from all currently named Actinomyces species and related taxa. Comparative 16S rRNA gene sequencing studies showed that the bacterium represents a hitherto-unknown phylogenetic line that is related to but distinct from Actinomyces, Actinobaculum, Arcanobacterium, and Mobiluncus. We propose, on the basis of phenotypic and phylogenetic evidence, that the unknown bacterium from human clinical specimens should be classified as a new genus and species, Varibaculum cambriensis gen. nov., sp. nov. The type strain of Varibaculum cambriensis sp. nov. is CCUG 44998(T) = CIP 107344(T).
Resumo:
Five soy proteins isolate (SPI) fractions were produced using two microfiltration membranes with different pore sizes. Fractionation was carried out on SPI produced by isoelectric precipitation of a crude protein extract. The five fractions were two retentates and two permeates from the two membranes, the fifth fraction was obtained as the retentate on the smaller-po re- sized membrane fed with the permeate from the larger-pore-sized membrane. Solubility, foaming and emulsifying properties of the collected fractionates were investigated. It was observed that in the pH range 3-8 the retentates featured superior solubility compared with permeates. There was no significant difference (p > 0.0 1) in solubility between the retentates and SPI at pH >= 6. Foaming characteristics of the fractions followed the same trend as solubility with regard to foam expansion. There was, however, no particular trend observed with regards to foam stability. Emulsions stabilised by the retentates exhibited higher values (p<0.01) of emulsion stability index (ESI) and emulsifying activity index (EAI) than those stabilised with permeates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiles indicated that the fractions exhibiting high functionality in terms of solubility, foaming and emulsifying properties were also richer in 7S globulin soy protein subunits. Isoelectric focussing (IEF) profiles showed that retentates were richer in species with isoelectric points (pl) between 5.2 and 5.6 while permeates featured more prominently at pis between 4.5 and 4.8. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Aims: The study of peptidase, esterase and caseinolytic activity of Lactobacillus paracasei subsp. paracasei, Debaryomyces hansenii and Sacchromyces cerevisiae isolates from Feta cheese brine. Methods and Results: Cell-free extracts from four strains of Lact. paracasei subsp. paracasei, four strains of D. hansenii and three strains of S. cerevisiae, isolated from Feta cheese brine were tested for their proteolytic and esterase enzyme activities. Lactobacillus paracasei subsp. paracasei strains had intracellular aminopeptidase, dipeptidyl aminopeptidase, dipeptidase, endopeptidase and carboxypeptidase activities. Esterases were detected in three of four strains of lactobacilli and their activities were smaller with higher molecular weight fatty acids. The strains of yeasts did not exhibit endopeptidase as well as dipeptidase activities except on Pro-Leu. Their intracellular proteolytic activity was higher than that of lactobacilli. Esterases from yeasts preferentially degraded short chain fatty acids. Lactobacilli degraded preferentially beta-casein. Caseinolytic activity of yeasts was higher than that of lactobacilli. Conclusions: The results suggest that Lact. paracasei subsp. paracasei and yeasts may contribute to the development of flavour in Feta cheese. Significance and impact of the Study: Selected strains could be used as adjunct starters to make high quality Feta cheese.
Resumo:
Two strains of a previously undescribed Actinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain of Actinomyces radicidentis is CCUG 36733.