373 resultados para Blades cytopathology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The length of wind turbine rotor blades has been increased during the last decades. Higher stresses arise especially at the blade root because of the longer lever arm. One way to reduce unsteady blade-root stresses caused by turbulence, gusts, or wind shear is to actively control the lift in the blade tip region. One promising method involves airfoils with morphing trailing edges to control the lift and consequently the loads acting on the blade. In the present study, the steady and unsteady behavior of an airfoil with a morphing trailing edge is investigated. Two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations are performed for a typical thin wind turbine airfoil with a morphing trailing edge. Steady-state simulations are used to design optimal geometry, size, and deflection angles of the morphing trailing edge. The resulting steady aerodynamic coefficients are then analyzed at different angles of attack in order to determine the effectiveness of the morphing trailing edge. In order to investigate the unsteady aerodynamic behavior of the optimal morphing trailing edge, time-resolved RANS-simulations are performed using a deformable grid. In order to analyze the phase shift between the variable trailing edge deflection and the dynamic lift coefficient, the trailing edge is deflected at four different reduced frequencies for each different angle of attack. As expected, a phase shift between the deflection and the lift occurs. While deflecting the trailing edge at angles of attack near stall, additionally an overshoot above and beyond the steady lift coefficient is observed and evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseñar y construir un robot acuático que destruya la presencia de larvas o pupas de mosquitos en contenedores de agua. Se construyó y se diseñó un robot con materiales reciclables construido con tubos de cañería PVC, lupa, sensores de luz y barrera, motor de fuente 110 v, resistencias, LCR, cargador 9 v y focos led, para que destruya larvas de mosquitos en un contenedor de agua. Como resultado hay una cero prevalencia de índice larvario porque el robot detecta presencia larvaria con sensores y rayos laser activándose automáticamente con el efecto de succión y destrucción larvas en su interior eliminándolas desechas al utilizar filtros de 10 micras y aspas metálicas, el robot se activa por cinco a diez minutos y se apaga automáticamente hasta esperar la alarma otra vez según disposición de larvas. Conclusión el uso del robot acuático en contenedores de agua no se encuentra índices larvarios, así como pupas, que puede ser utilizado como control antilarvario para el combate transmisor de Dengue, Zika, Chikungunya entre otros.
Design and build an aquatic robot to destroy the presence of larvae or pupae of mosquitoes in water containers. It was built and a robot with recyclables built with tubes pipe PVC, magnifier, light sensors and barrier, engine power 110 v, resistors, LCR, charger 9 vy spotlights led, to destroy mosquito larvae was designed in a container of water. As a result there is a zero prevalence Larval rate because the robot detects larval presence sensors and lasers automatically activated with the suction effect and larvae destruction their killing the inner cast off using filters of 10 microns and metal blades, the robot is activated by five to ten minutes to wait automatically turns off the alarm again available as larvae. Conclusion use water in water containers robot is not larval indices and pupae, which can be used as anti larval control for transmitter combat Dengue, Zika, Chikungunya among others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an integrated model for an offshore wind turbine taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a permanent magnet synchronous generator, and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the total harmonic distortion on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. Proportional integral fractional-order control supports the control strategy. A comparison between the drive train models is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an integrated model for an offshore wind energy system taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a PMSG and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the THD on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. PI fractional-order control supports the control strategy. A comparison between the drive train models is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the early twentieth century, musicology was established as an academic discipline in the United States. Nonetheless, with the exception of Iberian medieval and Renaissance repertories, U.S. scholars largely overlooked the music of the Spanish- and Portuguese- speaking world. Why should this have been the case, especially in light of Spain’s strong historical presence in the United States? This autobiographical essay examines this question by tracing the career of an individual musicologist, the Hispanist musicologist Carol A. Hess. Evaluated here are disciplinary shifts in U.S. musicology —methodological, philosophical, and ideological— over the past thirty years. These transformations have combined to make this repertory a viable field of study today. Musicologists in the United States can now make their careers by specializing in Iberian and Latin American music, as well as the music of the Hispanic diaspora. They research topics ranging from the avant-garde composer Llorenç Barber to the rapper Nach Scratch or the popular bandleader Xavier Cugat and his U.S. audiences of the 1940s, while others also pursue the time-tested areas of medieval and Renaissance music. Iberian and Latin American music is regularly offered in postsecondary institutions while instructors now have a variety of textbooks and other pedagogical resources from which to choose. All add up to a disciplinary freedom that would have been unthinkable only a few decades ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear cascade testing serves a fundamental role in the research, development, and design of turbomachines as it is a simple yet very effective way to compute the performance of a generic blade geometry. These kinds of experiments are usually carried out in specialized wind tunnel facilities. This thesis deals with the numerical characterization and subsequent partial redesign of the S-1/C Continuous High Speed Wind Tunnel of the Von Karman Institute for Fluid Dynamics. The current facility is powered by a 13-stage axial compressor that is not powerful enough to balance the energy loss experienced when testing low turning airfoils. In order to address this issue a performance assessment of the wind tunnel was performed under several flow regimes via numerical simulations. After that, a redesign proposal aimed at reducing the pressure loss was investigated. This consists of a linear cascade of turning blades to be placed downstream of the test section and designed specifically for the type of linear cascade being tested. An automatic design procedure was created taking as input parameters those measured at the outlet of the cascade. The parametrization method employed Bézier curves to produce an airfoil geometry that could be imported into a CAD software so that a cascade could be designed. The proposal was simulated via CFD analysis and proved to be effective in reducing pressure losses up to 41%. The same tool developed in this thesis could be adopted to design similar apparatuses and could also be optimized and specialized for the design of turbomachines components.