555 resultados para Birefringence photoinduced
Resumo:
We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
Resumo:
Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.
Resumo:
The optical characterization of uniaxial nematic liquid crystals gives basic information on its birefringence and on the shape anisotropy of micelles in nematic lyotropic phases. In this work, these optical parameters were determined as a function of temperature along the sequence discotic nematic (ND) - coexistence (ND+NC) - calamitic nematic (NC) - isotropic (I) in a lyotropic mixture of the sodium dodecyl (lauryl) sulphate (SDS) - decanol (DeOH) and D2O for a specific concentration. Results for the uniaxial phases agree with previous assignments. Results in the coexistence region indicate an inhomogeneous mixture of the two uniaxial phases.
Resumo:
The structure and local ordering of 1,6-hexamethylenediisocyanate-(acetoxypropy1) cellulose (HDI-APC) liquid crystalline elastomer thin films are investigated by using X-ray diffraction and scattering techniques. Optical microscopy and mechanical essays are performed to complement the investigation. The study is performed in films subjected or not to an uniaxial stress. Our results indicate that the film is constituted by a bundle of helicoidal fiber-like structure, where the cellobiose block spins around the axis of the fiber, like a string-structure in a smectic-like packing, with the pitch defined by a smectic-like layer. The fibers are in average perpendicular to the smectic-like planes. Without the stretch, these bundles are warped, only with a residual orientation along the casting direction. The stretch orients the bundles along it, increasing the smectic-like and the nematic-like ordering of the fibers. Under stress, the network of molecules which connects the cellobiose blocs and forms the cellulosic matrix tends to organize their links in a hexagonal-like structure with lattice parameter commensurate to the smectic-like structure.
Resumo:
We report in detail oscillatory magnetoresistance in double quantum wells under microwave irradiation. The experimental investigation contains measurements of frequency, power and temperature dependence. In theory, the observed interference oscillations are explained in terms of the influence of subband coupling on the frequency-dependent photoinduced part of the electron distribution function. Thus, the magnetoresistance shows the interference of magneto-intersubband and conventional microwave induced resistance oscillations.
Resumo:
Menezesite, ideally Ba2MgZr4(BaNb12O42)center dot 12H(2)O, occurs as a vug mineral in the contact zone between dolomite carbonatite and ""jacupirangite"" (=a pyroxenite) at the Jacupiranga mine, in Cajati county, Sao Paulo state, Brazil, associated with dolomite, calcite, magnetite, clinohumite, phlogopite, ancylite-(Ce), strontianite, pyrite, and tochilinite. This is also the type locality for quintinite-2H. The mineral forms rhombododecahedra up to I mm, isolated or in aggregates. Menezesite is transparent and displays a vitreous luster; it is reddish brown with a white streak. It is non-fluorescent. Mohs hardness is about 4. Calculated density derived from the empirical formula is 4.181 g/cm(3). It is isotropic, 1.93(1) (white light); n(calc) = 2.034. Menezesite exhibits weak anomalous birefringence. The empirical formula is (Ba1.47K0.53Ca0.3,Ce0.17Nd0.10Na0.06La0.02)(Sigma 2.66)(Mg0.94Mn0.23Fe0.23Al0.03)(Sigma 1.43)(Zr2.75Ti0.96Th0.29)(Sigma 4.00)[(Ba0.72Th0.26U0.02)(Sigma 1.00)(Nb9.23Ti2.29Ta0.36Si0.12)Sigma O-12.00(42)]center dot 12H(2)O. The mineral is cubic, space group 10 (204), a = 13.017(1) angstrom, V = 2206(1) angstrom(3), Z = 2. Menezesite is isostructural with the synthetic compound Mg-7[MgW12O42](OH)(4)center dot 8H(2)O. The mineral was named in honor of Luiz Alberto Dias Menezes Filho (born 1950), mining engineer, mineral collector and merchant. Both the description and the name were approved by the CNMMN-IMA (Nomenclature Proposal 2005-023). Menezesite is the first natural heteropolyniobate. Heteropolyanions have been employed in a range of applications that include virus-binding inorganic drugs (including the AIDs virus), homogeneous and heterogeneous catalysts, electro-optic and electrochromic materials, metal and protein binding, and as building blocks for nanostructuring of materials.
Resumo:
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen ((1)O(2)). Irradiation of hair shafts (lambda(ex)>400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by (1)H NMR. After 532-nm excitation, all hair shafts presented the characteristic (1)O(2) emission (lambda(em) = 1270 nm), whose intensity varied inversely with the melanin content. (1)O(2) lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a (1)O(2) suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for (1)O(2) in the solvents in which the hair shafts were suspended, indicating that (1)O(2) is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress (1)O(2), with similar efficiencies. The higher amount of (1)O(2) generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of (1)O(2) in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin. 2011 Published by Elsevier Inc.
Resumo:
The heteroaggregation behavior between a new class of nonplanar cationic beta-octabrominated meso-alkylpyridinium zinc(II)-porphyrins (beta-Br(8)(ZnP)) and anionic tetrasulfonated metallophthalocyanines (MTSPc, M = Ni(II) and Cu(II)) has been studied by UV-Vis electronic spectroscopy, in dimethylsulfoxide (DMSO) solution. The heteroaggregate stoichiometry and the association constants were determined by means of Job plots. Dimers and unexpected trimers, taking into account the existence of axially coordinated DMSO molecules to the central metal in both beta-Br(8)(ZnP) and MTSPc complexes, are formed in solution. The spectroscopic properties of the heteroaggregates are markedly different from those observed in the correspondent planar cationic derivatives, the heteroaggregates showing major changes predominantly in the beta-Br(8)(ZnP) Soret band region and minor effects in the MTSPc Q bands. The observed changes in the Soret band region (red/blue shifts, decrease in the absorption intensities) depend on the nature of the alkyl substituent attached to the meso-pyridinium group. The greater versatility of the nonplanar porphyrins accommodating the meso-substituents in out-of-plane and in-plane conformations is proposed to explain the observed stoichiometries and the differences on the heteroaggregates spectroscopic properties for each beta-Br(8)(ZnP) compound. The likely conformations assumed by the meso-substituents in these beta-Br(8)(ZnP) compounds and its spectroscopic characteristics are in accordance with the participation of the substituents as the main factor on the extent of the observed red-shifted spectra in nonplanar porphyrins. The obtained association constants (K(IP)) for the dimers and trimers are lower than those previously found for the similar planar cationic porphyrin systems, due to the lack of extensive pi-pi interactions and to the less effective approximation between the ionic groups, resulting in loosened heteroaggregates, particularly for the trimeric systems. Furthermore, the experimental results suggest that the NiTSPc is more distorted in DMSO solution than the CuTSPc derivative, favoring the interaction with the nonplanar beta-Br(8)(ZnP) compounds. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The protonation effect on the vibrational and electronic spectra of 4-aminoazobenzene and 4-(dimethylamino)azobenzene was investigated by resonance Raman spectroscopy, and the results were discussed on the basis of quantum-chemical calculations. Although this class of molecular systems has been investigated in the past concerning the azo-hydrazone tautomerism, the present work is the first to use CASSCF/CASPT2 calculations to unveil the structure of both tautomers as well the nature of the molecular orbitals involved in chromophoric moieties responsible for the resonance Raman enhancement patterns. More specifically both the resonance Raman and theoretical results show clearly that in the neutral species, the charge transfer transition involves mainly the azo moiety, whereas in the protonated forms there is a great difference, depending on the tautomer. In fact, for the azo tautomer the transition is similar to that observed in the corresponding neutral species, whereas in the hydrazone tautomer such a transition is much more delocalized due to the contribution of the quinoid structure. The characterization of protonated species and the understanding of the tautomerization mechanism are crucial for controlling molecular properties depending on the polarity and pH of the medium.
Resumo:
The question raised in the title has been answered by comparing the solvatochromism of two series of polarity probes, the lipophilicities of which were increased either by increasing the length of an alkyl group (R) attached to a fixed pyridine-based structure or through annelation (i.e., by fusing benzene rings onto a central pyridine-based structure). The following novel solvatochromic probes were synthesized: 2,6-dibromo-4-[(E)-2-(1-methylquinolinium-4-yl)ethenyl]-phenolate (MeQMBr(2)) and 2,6-dibromo-4-[(E)-2-(1-methyl-acridinium-4- yl) ethenyl)]phenolate (MeAMBr(2) The solvatochromic behavior of these probes, along with that of 2,6dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl]phenol-ate(MePMBr(2)) was analyzed in terms of increasing probe lipophilicity, through annelation. Values of the empirical solvent polarity scale [E(T)(MePMBr(2))] in kcalmol(-1) correlated linearly with ET(30), the corresponding values for the extensively employed probe 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (RB). On the other hand, the nonlinear correlations of ET(MeQMBr(2)) or ET(MeAMBr(2)) with E(T)(30) are described by second-order polynomials. Possible reasons for this behavior include: i) self-aggregation of the probe, ii) photoinduced cis/trans isomerization of the dye, and iii) probe structure- and solvent-dependent contributions of the quinonoid and zwitterionic limiting formulas to the ground and excited states of the probe. We show that mechanisms (i) and (ii) are not operative under the experimental conditions employed; experimental evidence (NMR) and theoretical calculations are presented to support the conjecture that the length of the central ethenylic bond in the dye increases in the order MeAMBr(2) > MeQMBr(2) > MePMBr(2), That is, the contribution of the zwitterionic limiting formula predominates for the latter probe, as is also the case for RB, this being the reason for the observed linear correlation between the ET(MePMBr2) and the ET(30) scales. The effect of increasing probe lipophilicity on solvatochromic behavior therefore depends on the strategy employed. Increasing the length of R affects solvatochromism much less than annelation, because the former structural change hardly perturbs the energy of the intramolecular charge-transfer transition responsible for solvatochromism. The thermo-solvatochromic behavior (effect of temperature on solvatochromism) of the three probes was studied in mixtures of water with propanol and/or with DMSO. The solvation model used explicitly considers the presence of three ""species"" in the system: bulk solution and probe solvation shell [namely, water (W), organic solvent (Solv)], and solvent-water hydrogen-bonded aggregate (Solv-W). For aqueous propanol, the probe is efficiently solvated by Solv-W; the strong interaction of DMSO with W drastically decreases the efficiency of Solv-W in solvating the probe, relative to its precursor solvents. Temperature increases resulted in desolvation of the probes, due to the concomitant reduction in the structured characters of the components of the binary mixtures.
Resumo:
Carboxylic acid groups in PAH/PAA-based multilayers bind silver cations by ion exchange with the acid protons. The aggregation and spatial distribution of the nanoparticles proved to be dependent oil the process used to reduce the silver acetate aqueous solution. The reducing method with ambient light formed larger nanoparticles with diameters ranging from 4-50 nm in comparison with the reduction method using UV light, which gave particles with diameters of 2-4 nm The high toughness of samples reduced by ambient light is a result of two population distributions of particle sizes caused by different mechanisms when compared with the UV light process. According to these phenomena, a judicious choice of the spectral source call be used as a way to control the type and size of silver nanoparticles formed on PEMs. Depending on the energy of the light source, the Ag nanoparticles present cubic and/or hexagonal crystallographic structures, as confirmed by XRD. Beyond the kinetically controlled process of UV photoinduced cluster formation, the annealing produced by UV light allowed a second mechanism to modify the growth rates, spatial distribution, and phases.
Resumo:
Refraction, interference, and diffraction are distinguishing features of wavelike phenomena. Although they are usually associated only with a purely spatial wave-propagation pattern, analogs to interference and diffraction involving the spatio-temporal dynamics of waves in one dimension have been discussed. We complete the triplet of analogies by discussing how spatio-temporal analogs to refraction are exhibited by a quantum particle in one dimension that is scattering off a step barrier. Similarly, birefringence in spacetime occurs for a spin-1/2 particle in a magnetic field.
Resumo:
The aim of this study was to analyze the effects of formulations containing DMAE pidolate and DMAE acetoamidobenzoate on the skin. Four areas of five swines were submitted to following treatments during 15 days: C (Control), S (Silicone = 80 % DC*LC Blend (R)), F1 (DMAE acetoamidobenzoate), F2 (DMAE pidolate). Measures of the thickness of epidermis and stratum corneum, and the density population of fibroblasts and leukocytes in papillary dermis were obtained. We also assessed possible variations in birefringence of dermis collagen bundles. Means of the data was compared using ANOVA followed by the Tukey test. The F1 and F2 groups showed a thicker epidermis than the control group (p < 0.01), but did not demonstrate a significant difference in the number of fibroblasts and leukocytes, as well as in the birefringent areas of collagen bundles, in comparison with the control groups. The DMAE-supplemented formulations enhanced viable epidermis thickness, but did not modify structures related with mechanical properties of the skin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)