481 resultados para Biomaterial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biociências - FCLAS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The radiographic characteristics of a biomaterial, such as its density, may influence the evaluation of the results obtained following its clinical use. Objective: The aim of this study was to evaluate the radiographic density of biomaterials used as bone substitutes, inserted into dental sockets and bone defects in created in the jaws of pigs. The influence of a soft tissue simulator on the results was also evaluated. Material and method: Two and three-millimeter-deep bone defects were created in the pigs mandible and the right first molar extraction socket were used. Commercial samples of five biomaterials were tested: Hydroxyapatite, Lyophilized Bovine Bone, 45S5 bioglass (generic), PerioGlass and β-Tri-Calcium Phosphate, and compared to a positive (mandibular bone) and negative (empty alveolar bone defects) controls. Radiographic images were acquired with and without a 10 mm thick soft-tissue simulator. Result: The results for the extraction sockets showed no differences between the biomaterials and the negative control. For the bone defects, the depth of the defect density influenced the density, both in the negative control (p < 0.01) and biomaterials (p < 0.05) groups. The soft- tissue simulator did not alter the results. Conclusion: The type of the evaluated defect can interfere in the radiographic features presented by each biomaterial, while the simulation of soft tissues was not statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bone resorption in the anterior maxilla, due to its aesthetic importance, can be considered one of the challenges in implant dentistry. Autogenous bone graft is the most indicated bone augmentation procedure, aiming an implant supported rehabilitation.. Alternatively, some other graft procedures can be done with homogenous and xenogenous bone graft, biomaterials and different associations. Additionally to the mentioned biomaterials, the bone morphogenetic protein (BMP), specially the rhBMP-2, which was characterized as a bone osteoinductor, and consecutively, a potential autogenous graft substitute, with previsibility and no necessity of association to other biomaterial. The objective of this study is to present a single case using the rhBMP-2 for bone augmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of bone grafts from bone tissue banks, also known as bone allografts, has increased in the last years, although most of its users still have concerns on resources and processing protocols. The objective of this paper was to make a literature review about the use of bone allografts in Dentistry, and also about the legal considerations regarding this biomaterial. Studies regarding the donor selection, the cross-infection risks and processing protocols of this biomaterial are still rare but essential, and allied to those regarding its clinical application, can base its use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10–14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10–14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10–14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10–14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10−9 mol L−1 did not improve bone regeneration potential in the long-term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimThe aim of this study was to evaluate the healing of autologous bone block grafts or deproteinized bovine bone mineral (DBBM) block grafts applied concomitantly with collagen membranes for horizontal alveolar ridge augmentation.Material and methodsIn six Labrador dogs, molars were extracted bilaterally, the buccal bony wall was removed, and a buccal box-shaped defect created. After 3months, a bony block graft was harvested from the right ascending ramus of the mandible and reduced to a standardized size. A DBBM block was tailored to similar dimensions. The two blocks were secured with screws onto the buccal wall of the defects in the right and left sides of the mandible, respectively. Resorbable membranes were applied at both sides, and the flaps sutured. After 3months, one implant was installed in each side of the mandible, in the interface between grafts and parent bone. After 3months, biopsies were harvested and ground sections prepared to reveal a 6-month healing period of the grafts.Results776.2% and 5.9 +/- 7.5% of vital mineralized bone were found at the autologous bone and DBBM block graft sites, respectively. Moreover, at the DBBM site, 63 +/- 11.7% of connective tissue and 31 +/- 15.5% of DBBM occupied the area analyzed. Only 0.2 +/- 0.4% of DBBM was found in contact with newly formed bone. The horizontal loss was in a mean range of 0.9-1.8mm, and 0.3-0.8mm, at the autologous bone and DBBM block graft sites, respectively.ConclusionsAutologous bone grafts were vital and integrated to the parent bone after 6months of healing. In contrast, DBBM grafts were embedded into connective tissue, and only a limited amount of bone was found inside the scaffold of the biomaterial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate and XRD demonstrated amorphous calcium phosphate and calcium chloride on bacterial cellulose nanobiocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial cellulose nanobiocomposites surface with different calcium phosphate particles morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to assess the bone repair process of crystallized Biosilicate in surgically created defects on rats' calvaria. This biomaterial was recently developed for odontological use. We used fifteen rats (rattus norvegicus albinus, Wistar), and two 5 mm surgical defects were performed on each of them; the defects were made with trephine drill on the calvarium region prior to the biomaterial placement. Groups were divided as follows: Group 1-defect filled with clot; Group 2-defect filled with crystallized Biosilicate. After 7, 14 and 28 days the animals were killed, the parts were retrieved and slides were prepared for histological studies. Bone formation was satisfactory in all groups, with direct contact between biomaterial surface and bone and absence of infection signs. The 28 days periods showed better results, and statistically significant difference between Clot Group (90.2 %) and Biosilicate (58 %; p = 0.002) was seen, regarding presence of bone tissue on the surgical defects. Our study revealed that defects filled with clot present better results on bone formation compared to crystallized Biosilicate, which is considered a biocompatible material with favorable osteoconductive properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autologous fibrin gel is commonly used as a scaffold for filling defects in articular cartilage. This biomaterial can also be used as a sealant to control small hemorrhages and is especially helpful in situations where tissue reparation capacity is limited. In particular, fibrin can act as a scaffold for various cell types because it can accommodate cell migration, differentiation, and proliferation. Despite knowledge of the advantages of this biomaterial and mastery of the techniques required for its application, the durability of several types of sealant at the site of injury remains questionable. Due to the importance of such data for evaluating the quality and efficiency of fibrin gel formulations on its use as a scaffold, this study sought to analyze the heterologous fibrin sealant developed from the venom of Crotalus durissus terrificus using studies in ovine experimental models. The fibrin gel developed from the venom of this snake was shown to act as a safe, stable, and durable scaffold for up to seven days, without causing adverse side effects. Fibrin gel produced from the venom of the Crotalus durissus terrificus snake possesses many clinical and surgical uses. It presents the potential to be used as a biomaterial to help repair skin lesions or control bleeding, and it may also be used as a scaffold when applied together with various cell types. The intralesional use of the fibrin gel from the venom of this snake may improve surgical and clinical treatments in addition to being inexpensive and adequately consistent, durable, and stable. The new heterologous fibrin sealant is a scaffold candidate to cartilage repair in this study.