982 resultados para Biology, Bioinformatics|Computer Science
Resumo:
DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.
Resumo:
Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
Resumo:
Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.
Resumo:
n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
We present the prototype tool CADS* for the computer-aided development of an important class of self-* systems, namely systems whose components can be modelled as Markov chains. Given a Markov chain representation of the IT components to be included into a self-* system, CADS* automates or aids (a) the development of the artifacts necessary to build the self-* system; and (b) their integration into a fully-operational self-* solution. This is achieved through a combination of formal software development techniques including model transformation, model-driven code generation and dynamic software reconfiguration.
Resumo:
Rhizocarpon geographicum (L.) DC. is one of the most widely distributed species of crustose lichens. This unusual organism comprises yellow-green ‘areolae’ that contain the algal symbiont which develop and grow on the surface of a non-lichenized, fungal ‘hypothallus’ that extends beyond the margin of the areolae to form a marginal ring. This species grows exceptionally slowly with annual radial growth rates (RGR) as low as 0.07 mm yr-1 and its considerable longevity has been exploited by geologists in the development of methods of dating the age of exposure of rock surfaces and glacial moraines (‘lichenometry’). Recent research has established some aspects of the basic biology of this important and interesting organism. This chapter describes the general structure of R. geographicum, how the areolae and hypothallus develop, why the lichen grows so slowly, the growth rate-size curve, and some aspects of the ecology of R. geographicum including whether the lichen can inhibit the growth of its neighbours by chemical means (‘allelopathy’). Finally, the importance of R. geographicum in direct and indirect lichenometry is reviewed.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.
Resumo:
A szerzők cikkükben a számítástechnikai hulladékokkal foglalkoznak, számítástechnikai eszközök alatt a számítógép konfigurációk összetevőit értik, tehát számítógépeket (asztali, hordozható, terminál stb.), és perifériáit (monitor, nyomtató, cd-író stb.), valamint ezek alkatrészeit és kiegészítőit (chipek, mechanikus részek, festékkazetták stb.). A rendszeres használat környezeti hatásait csak abból a szempontból vizsgálták, hogy ennek során bizonyos alkatrészek, kellékek (kiemelten a nyomtatók festékkazettái) a gépnél nagyobb gyakorisággal cserélődnek, s válhatnak hulladékká. A fő fókusz a számítástechnikai eszközök élettartamának vége, s ebből a szempontból kulcsfogalom a használt személyi számítógép kategória. _____ In their article, the authors discuss the issue of computer waste; under the category of information technology devices they understand the components of computer configurations, that is computers (desktop, portable, terminal etc.) and their peripheries (monitor, printer, CD writer, etc), and also the components and supplements of these (chips, mechanical parts, toner cartridges, etc.). The environmental impact of regular use was examined only from one aspect: during regular use certain components and accessories (especially the toner cartridges of printers) are more often changed and become waste. The main focus is the end of the life time of computer devices, and from this point of view used personal computers are a key concept.
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
Distributed applications are exposed as reusable components that are dynamically discovered and integrated to create new applications. These new applications, in the form of aggregate services, are vulnerable to failure due to the autonomous and distributed nature of their integrated components. This vulnerability creates the need for adaptability in aggregate services. The need for adaptation is accentuated for complex long-running applications as is found in scientific Grid computing, where distributed computing nodes may participate to solve computation and data-intensive problems. Such applications integrate services for coordinated problem solving in areas such as Bioinformatics. For such applications, when a constituent service fails, the application fails, even though there are other nodes that can substitute for the failed service. This concern is not addressed in the specification of high-level composition languages such as that of the Business Process Execution Language (BPEL). We propose an approach to transparently autonomizing existing BPEL processes in order to make them modifiable at runtime and more resilient to the failures in their execution environment. By transparent introduction of adaptive behavior, adaptation preserves the original business logic of the aggregate service and does not tangle the code for adaptive behavior with that of the aggregate service. The major contributions of this dissertation are: first, we assessed the effectiveness of BPEL language support in developing adaptive mechanisms. As a result, we identified the strengths and limitations of BPEL and came up with strategies to address those limitations. Second, we developed a technique to enhance existing BPEL processes transparently in order to support dynamic adaptation. We proposed a framework which uses transparent shaping and generative programming to make BPEL processes adaptive. Third, we developed a technique to dynamically discover and bind to substitute services. Our technique was evaluated and the result showed that dynamic utilization of components improves the flexibility of adaptive BPEL processes. Fourth, we developed an extensible policy-based technique to specify how to handle exceptional behavior. We developed a generic component that introduces adaptive behavior for multiple BPEL processes. Fifth, we identify ways to apply our work to facilitate adaptability in composite Grid services.
Resumo:
Developing analytical models that can accurately describe behaviors of Internet-scale networks is difficult. This is due, in part, to the heterogeneous structure, immense size and rapidly changing properties of today's networks. The lack of analytical models makes large-scale network simulation an indispensable tool for studying immense networks. However, large-scale network simulation has not been commonly used to study networks of Internet-scale. This can be attributed to three factors: 1) current large-scale network simulators are geared towards simulation research and not network research, 2) the memory required to execute an Internet-scale model is exorbitant, and 3) large-scale network models are difficult to validate. This dissertation tackles each of these problems. ^ First, this work presents a method for automatically enabling real-time interaction, monitoring, and control of large-scale network models. Network researchers need tools that allow them to focus on creating realistic models and conducting experiments. However, this should not increase the complexity of developing a large-scale network simulator. This work presents a systematic approach to separating the concerns of running large-scale network models on parallel computers and the user facing concerns of configuring and interacting with large-scale network models. ^ Second, this work deals with reducing memory consumption of network models. As network models become larger, so does the amount of memory needed to simulate them. This work presents a comprehensive approach to exploiting structural duplications in network models to dramatically reduce the memory required to execute large-scale network experiments. ^ Lastly, this work addresses the issue of validating large-scale simulations by integrating real protocols and applications into the simulation. With an emulation extension, a network simulator operating in real-time can run together with real-world distributed applications and services. As such, real-time network simulation not only alleviates the burden of developing separate models for applications in simulation, but as real systems are included in the network model, it also increases the confidence level of network simulation. This work presents a scalable and flexible framework to integrate real-world applications with real-time simulation.^
Resumo:
The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.