999 resultados para Bayesian fusion
Resumo:
Mycobacterial spheroplasts were prepared by treatment of the glycinesensitized cells with a combination of lipase and lysozyme. They were stable for several hours at room temperature but were lysed on treatment with 0.1% sodium dodecyl sulfate. The spheroplasts could be regenerated on a suitable medium. Fusion and regeneration of the spheroplasts were attempted using drug resistant mutant strains ofM. smegmalis. Recombinants were obtained from spheroplast fusion mediated by polyethylene glycol and dimethyl sulfoxide. Simultaneous expression of rccombinant properties was observed only after an initial lag in the isolated clones. This has been explained as due to “chromosome inactivation” in the fused product.
Resumo:
Stochastic behavior of an aero-engine failure/repair process has been analyzed from a Bayesian perspective. Number of failures/repairs in the component-sockets of this multi-component system are assumed to follow independent renewal processes with Weibull inter-arrival times. Based on the field failure/repair data of a large number of such engines and independent Gamma priors on the scale parameters and log-concave priors on the shape parameters, an exact method of sampling from the resulting posterior distributions of the parameters has been proposed. These generated parameter values are next utilised in obtaining the posteriors of the expected number of system repairs, system failure rate, and the conditional intensity function, which are computed using a recursive formula.
Resumo:
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.
Resumo:
We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (ˆfCLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achieving the same time and space complexity as the traditional log-likelihood scoring criterion. The resulting criterion has an information-theoretic interpretation based on interaction information, which exhibits its discriminative nature. To evaluate the performance of the proposed criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large suite of benchmark data sets from the UCI repository show that ˆfCLL-trained classifiers achieve at least as good accuracy as the best compared classifiers, using significantly less computational resources.
Resumo:
Bayesian networks are compact, flexible, and interpretable representations of a joint distribution. When the network structure is unknown but there are observational data at hand, one can try to learn the network structure. This is called structure discovery. This thesis contributes to two areas of structure discovery in Bayesian networks: space--time tradeoffs and learning ancestor relations. The fastest exact algorithms for structure discovery in Bayesian networks are based on dynamic programming and use excessive amounts of space. Motivated by the space usage, several schemes for trading space against time are presented. These schemes are presented in a general setting for a class of computational problems called permutation problems; structure discovery in Bayesian networks is seen as a challenging variant of the permutation problems. The main contribution in the area of the space--time tradeoffs is the partial order approach, in which the standard dynamic programming algorithm is extended to run over partial orders. In particular, a certain family of partial orders called parallel bucket orders is considered. A partial order scheme that provably yields an optimal space--time tradeoff within parallel bucket orders is presented. Also practical issues concerning parallel bucket orders are discussed. Learning ancestor relations, that is, directed paths between nodes, is motivated by the need for robust summaries of the network structures when there are unobserved nodes at work. Ancestor relations are nonmodular features and hence learning them is more difficult than modular features. A dynamic programming algorithm is presented for computing posterior probabilities of ancestor relations exactly. Empirical tests suggest that ancestor relations can be learned from observational data almost as accurately as arcs even in the presence of unobserved nodes.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.
Resumo:
This work describes an online handwritten character recognition system working in combination with an offline recognition system. The online input data is also converted into an offline image, and parallely recognized by both online and offline strategies. Features are proposed for offline recognition and a disambiguation step is employed in the offline system for the samples for which the confidence level of the classifier is low. The outputs are then combined probabilistically resulting in a classifier out-performing both individual systems. Experiments are performed for Kannada, a South Indian Language, over a database of 295 classes. The accuracy of the online recognizer improves by 11% when the combination with offline system is used.
Resumo:
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as similar to 20 mu m(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Resumo:
Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.
Resumo:
We describe here the characterization of the gene gp64 encoding the envelope fusion protein GP64 (open reading frame) ORF 105 from Bombyx mori nucleopolyhedrovirus (BmNPV). gp64 was transcribed from the early to late stages of infection and the transcripts were seen from 6 to 72 h post infection (hpi). The early transcripts initiated from a consensus CAGT motif while the late transcripts arose from three conserved TAAG motifs, all of which were located in the near upstream region of the coding sequence. Both early and late transcripts terminated at a run of T residues following the second polyadenylation signal located 31 nt downstream of the translation termination codon. BmGP64 protein was detectable from 6 hpi and was present in larger quantities throughout the infection process from 12 hpi, in BmNPV-infected BmN cells. The persistent presence of GP64 in BmN cells differed from the protein expression pattern of GP64 in Autographa californica multinucleocapsid nucleopolyhedrovirus infection, where the protein levels decreased significantly by late times (48 hpi). BmGP64 was located in the membrane and cytoplasm of the infected host cells and as a component of the budded virions. The production of infectious budded virus and the fusion activity were reduced when glycosylation of GP64 was inhibited. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Image fusion techniques are useful to integrate the geometric detail of a high-resolution panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MSS) image, particularly important for understanding land use dynamics at larger scale (1:25000 or lower), which is required by the decision makers to adopt holistic approaches for regional planning. Fused images can extract features from source images and provide more information than one scene of MSS image. High spectral resolution aids in identification of objects more distinctly while high spatial resolution allows locating the objects more clearly. The geoinformatics technologies with an ability to provide high-spatial-spectral-resolution data helps in inventorying, mapping, monitoring and sustainable management of natural resources. Fusion module in GRDSS, taking into consideration the limitations in spatial resolution of MSS data and spectral resolution of PAN data, provide high-spatial-spectral-resolution remote sensing images required for land use mapping on regional scale. GRDSS is a freeware GIS Graphic User Interface (GUI) developed in Tcl/Tk is based on command line arguments of GRASS (Geographic Resources Analysis Support System) with the functionalities for raster analysis, vector analysis, site analysis, image processing, modeling and graphics visualization. It has the capabilities to capture, store, process, analyse, prioritize and display spatial and temporal data.
Resumo:
The lifetime calculation of large dense sensor networks with fixed energy resources and the remaining residual energy have shown that for a constant energy resource in a sensor network the fault rate at the cluster head is network size invariant when using the network layer with no MAC losses.Even after increasing the battery capacities in the nodes the total lifetime does not increase after a max limit of 8 times. As this is a serious limitation lots of research has been done at the MAC layer which allows to adapt to the specific connectivity, traffic and channel polling needs for sensor networks. There have been lots of MAC protocols which allow to control the channel polling of new radios which are available to sensor nodes to communicate. This further reduces the communication overhead by idling and sleep scheduling thus extending the lifetime of the monitoring application. We address the two issues which effects the distributed characteristics and performance of connected MAC nodes. (1) To determine the theoretical minimum rate based on joint coding for a correlated data source at the singlehop, (2a) to estimate cluster head errors using Bayesian rule for routing using persistence clustering when node densities are the same and stored using prior probability at the network layer, (2b) to estimate the upper bound of routing errors when using passive clustering were the node densities at the multi-hop MACS are unknown and not stored at the multi-hop nodes a priori. In this paper we evaluate many MAC based sensor network protocols and study the effects on sensor network lifetime. A renewable energy MAC routing protocol is designed when the probabilities of active nodes are not known a priori. From theoretical derivations we show that for a Bayesian rule with known class densities of omega1, omega2 with expected error P* is bounded by max error rate of P=2P* for single-hop. We study the effects of energy losses using cross-layer simulation of - large sensor network MACS setup, the error rate which effect finding sufficient node densities to have reliable multi-hop communications due to unknown node densities. The simulation results show that even though the lifetime is comparable the expected Bayesian posterior probability error bound is close or higher than Pges2P*.