926 resultados para Bayesian Mixture Model, Cavalieri Method, Trapezoidal Rule
Resumo:
Numerical simulations of turbulent driven flow in a dense medium cyclone with magnetite medium have been conducted using Fluent. The predicted air core shape and diameter were found to be close to the experimental results measured by gamma ray tomography. It is possible that the Large eddy simulation (LES) turbulence model with Mixture multi-phase model can be used to predict the air/slurry interface accurately although the LES may need a finer grid. Multi-phase simulations (air/water/medium) are showing appropriate medium segregation effects but are over-predicting the level of segregation compared to that measured by gamma-ray tomography in particular with over prediction of medium concentrations near the wall. Further, investigated the accurate prediction of axial segregation of magnetite using the LES turbulence model together with the multi-phase mixture model and viscosity corrections according to the feed particle loading factor. Addition of lift forces and viscosity correction improved the predictions especially near the wall. Predicted density profiles are very close to gamma ray tomography data showing a clear density drop near the wall. The effect of size distribution of the magnetite has been fully studied. It is interesting to note that the ultra-fine magnetite sizes (i.e. 2 and 7 mu m) are distributed uniformly throughout the cyclone. As the size of magnetite increases, more segregation of magnetite occurs close to the wall. The cut-density (d(50)) of the magnetite segregation is 32 gm, which is expected with superfine magnetite feed size distribution. At higher feed densities the agreement between the [Dungilson, 1999; Wood, J.C., 1990. A performance model for coal-washing dense medium cyclones, Ph.D. Thesis, JKMRC, University of Queensland] correlations and the CFD are reasonably good, but the overflow density is lower than the model predictions. It is believed that the excessive underflow volumetric flow rates are responsible for under prediction of the overflow density. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper is an expanded and more detailed version of the work [1] in which the Operator Quantum Error Correction formalism was introduced. This is a new scheme for the error correction of quantum operations that incorporates the known techniques - i.e. the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method - as special cases, and relies on a generalized mathematical framework for noiseless subsystems that applies to arbitrary quantum operations. We also discuss a number of examples and introduce the notion of unitarily noiseless subsystems.
Resumo:
This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).
Resumo:
Finite mixture models are being increasingly used to model the distributions of a wide variety of random phenomena. While normal mixture models are often used to cluster data sets of continuous multivariate data, a more robust clustering can be obtained by considering the t mixture model-based approach. Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data where the number of observations n is very large relative to their dimension p. As the approach using the multivariate normal family of distributions is sensitive to outliers, it is more robust to adopt the multivariate t family for the component error and factor distributions. The computational aspects associated with robustness and high dimensionality in these approaches to cluster analysis are discussed and illustrated.
Resumo:
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.
Resumo:
Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.
Resumo:
Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
Purpose: (1) To devise a model-based method for estimating the probabilities of binocular fusion, interocular suppression and diplopia from psychophysical judgements, (2) To map out the way fusion, suppression and diplopia vary with binocular disparity and blur of single edges shown to each eye, (3) To compare the binocular interactions found for edges of the same vs opposite contrast polarity. Methods: Test images were single, horizontal, Gaussian-blurred edges, with blur B = 1-32 min arc, and vertical disparity 0-8.B, shown for 200 ms. In the main experiment, observers reported whether they saw one central edge, one offset edge, or two edges. We argue that the relation between these three response categories and the three perceptual states (fusion, suppression, diplopia) is indirect and likely to be distorted by positional noise and criterion effects, and so we developed a descriptive, probabilistic model to estimate both the perceptual states and the noise/criterion parameters from the data. Results: (1) Using simulated data, we validated the model-based method by showing that it recovered fairly accurately the disparity ranges for fusion and suppression, (2) The disparity range for fusion (Panum's limit) increased greatly with blur, in line with previous studies. The disparity range for suppression was similar to the fusion limit at large blurs, but two or three times the fusion limit at small blurs. This meant that diplopia was much more prevalent at larger blurs, (3) Diplopia was much more frequent when the two edges had opposite contrast polarity. A formal comparison of models indicated that fusion occurs for same, but not opposite, polarities. Probability of suppression was greater for unequal contrasts, and it was always the lower-contrast edge that was suppressed. Conclusions: Our model-based data analysis offers a useful tool for probing binocular fusion and suppression psychophysically. The disparity range for fusion increased with edge blur but fell short of complete scale-invariance. The disparity range for suppression also increased with blur but was not close to scale-invariance. Single vision occurs through fusion, but also beyond the fusion range, through suppression. Thus suppression can serve as a mechanism for extending single vision to larger disparities, but mainly for sharper edges where the fusion range is small (5-10 min arc). For large blurs the fusion range is so much larger that no such extension may be needed. © 2014 The College of Optometrists.
Resumo:
The sheer volume of citizen weather data collected and uploaded to online data hubs is immense. However as with any citizen data it is difficult to assess the accuracy of the measurements. Within this project we quantify just how much data is available, where it comes from, the frequency at which it is collected, and the types of automatic weather stations being used. We also list the numerous possible sources of error and uncertainty within citizen weather observations before showing evidence of such effects in real data. A thorough intercomparison field study was conducted, testing popular models of citizen weather stations. From this study we were able to parameterise key sources of bias. Most significantly the project develops a complete quality control system through which citizen air temperature observations can be passed. The structure of this system was heavily informed by the results of the field study. Using a Bayesian framework the system learns and updates its estimates of the calibration and radiation-induced biases inherent to each station. We then show the benefit of correcting for these learnt biases over using the original uncorrected data. The system also attaches an uncertainty estimate to each observation, which would provide real world applications that choose to incorporate such observations with a measure on which they may base their confidence in the data. The system relies on interpolated temperature and radiation observations from neighbouring professional weather stations for which a Bayesian regression model is used. We recognise some of the assumptions and flaws of the developed system and suggest further work that needs to be done to bring it to an operational setting. Such a system will hopefully allow applications to leverage the additional value citizen weather data brings to longstanding professional observing networks.
Resumo:
The goal of this paper is to model normal airframe conditions for helicopters in order to detect changes. This is done by inferring the flying state using a selection of sensors and frequency bands that are best for discriminating between different states. We used non-linear state-space models (NLSSM) for modelling flight conditions based on short-time frequency analysis of the vibration data and embedded the models in a switching framework to detect transitions between states. We then created a density model (using a Gaussian mixture model) for the NLSSM innovations: this provides a model for normal operation. To validate our approach, we used data with added synthetic abnormalities which was detected as low-probability periods. The model of normality gave good indications of faults during the flight, in the form of low probabilities under the model, with high accuracy (>92 %). © 2013 IEEE.
Resumo:
OBJECTIVE: The aim of this meta-analysis was to compare the efficacy and safety of infliximab-biosimilar and other available biologicals for the treatment of rheumatoid arthritis (RA), namely abatacept, adalimumab, certolizumab pegol, etanercept, golimumab, infliximab, rituximab and tocilizumab. METHODS: A systematic literature review of MEDLINE database until August 2013 was carried out to identify relevant randomized controlled trials (RCTs). Bayesian mixed treatment comparison method was applied for the pairwise comparison of treatments. Improvement rates by the American College of Rheumatology criteria (ACR20 and ACR50) at week 24 were used as efficacy endpoints, and the occurrence of serious adverse events was considered to assess the safety of the biologicals. RESULTS: Thirty-six RCTs were included in the meta-analysis. All the biological agents proved to be superior to placebo. For ACR20 response, certolizumab pegol showed the highest odds ratio (OR) compared to placebo, OR 7.69 [95 % CI 3.69-14.26], followed by abatacept OR 3.7 [95 % CI 2.17-6.06], tocilizumab OR 3.69 [95 % CI 1.87-6.62] and infliximab-biosimilar OR 3.47 [95 % CI 0.85-9.7]. For ACR50 response, certolizumab pegol showed the highest OR compared to placebo OR 8.46 [3.74-16.82], followed by tocilizumab OR 5.57 [95 % CI 2.77-10.09], and infliximab-biosimilar OR 4.06 [95 % CI 1.01-11.54]. Regarding the occurrence of serious adverse events, the results show no statistically significant difference between infliximab-biosimilar and placebo, OR 1.87 [95 % CI 0.74-3.84]. No significant difference regarding efficacy and safety was found between infliximab-biosimilar and the other biological treatments. CONCLUSION: This is the first indirect meta-analysis in RA that compares the efficacy and safety of biosimilar-infliximab to the other biologicals indicated in RA. We found no significant difference between infliximab-biosimilar and other biological agents in terms of clinical efficacy and safety.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed