949 resultados para Basic chromium sulfate
Resumo:
A low molecular weight fucogalactan, obtained from the brown seaweed Laminaria japonica, was separated into three fractions (LF1, LF2 and LF3) by DEAE-Sepharose FF column chromatography. All three fractions contained predominantly fucose, sulfate group and galactose. The results showed that the main fraction LF2 consisted of L-fucose, D-galactose and sulfate at a molar ratio 6:1:9. Structural study on the LF2 was carried out by NMR spectroscopy. The backbone of LF2 was primarily (1 -> 3)-linked alpha-L-fucopyranose residues (75%) and a few (1 -> 4)-alpha-L-fucopyranose linkages (25%). The branch points were at C-4 of 3-linked alpha-L-fucopyranose residues by beta-D-galactopyranose unites (35%, molar ratio) or at C-2 of 3-linked alpha-L-fucopyranose residues by non-reducing terminal fucose unites (65%, molar ratio). Sulfate groups occupied at position C-4 or C-2, sometimes C-2, 4 to fucose residues, and C-3 and/or C-4 to galactose residues. The structure of LF2 was supposed as following: [GRAPHICS] (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An impedimetric immunosensor was fabricated for rapid and non-labeled detection of sulfate-reducing bacteria, Desulforibrio caledoiensis (SRB) by immobilizing lectin-Concanavalin A using an agglutination assay. The immobilization of lectin was conducted using amine coupling on the surface of a gold (Au) electrode assembled with 11-Mercaptounclecanoic acid. Electrochemical impedance spectroscopy (EIS) was used to verify the stepwise assembly of the sensor system. The work conditions of the impedimetric immunosensor, such as pH of the buffer solutions and the incubation time of lectin, were optimized. Faradic impedance spectra for charge transfer for the redox probe Fe(CN)(6)(3-/4-) were measured to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (RI) increased with increasing SRB concentration. A linear relationship between R-ct and SRB concentration was obtained in SRB concentration range of 1.8 to 1.8 x 10(7) cfu/ml. The variation of the SRB population during the growth process was also monitored using the impedimetric immunosensor. This approach has great potential for simple, low-cost. and time-saving monitoring of microbial populations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.
Resumo:
The influences of the growing process of sulfate-reducing bacteria (SRB) in seawater system on the medium state and corrosion behavior of carbon steel were studied by detecting solution state parameters and using corrosion electrochemical methods. The growing process of SRB in the seawater shows the three stages of growing, death and residual phases. The solution state parameters of the concentration of sulfide, the pH value and the redox potential changed during the three stages of the SRB growing process. And the corrosion rate of D36 carbon steel was accelerated during the growing phase and stable during the death and residual phases. The results indicate that the medium state and the corrosion rate of the steel do not depend on the number of active SRB, but depend on the accumulation of the metabolism products of SRB. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A fast, sensitive and reliable potentiometric stripping analysis (PSA) is described for the selective detection of the marine pathogenic sulfate-reducing bacterium (SRB). Desulforibrio caledoiensis. The chemical and electrochemical parameters that exert influence on the deposition and stripping of lead ion, such as deposition potential, deposition time and pH value were carefully studied. The concentration of SRB was determined in acetate buffer solution (pH 5.2) under the optimized condition (deposition potential of -1.3 V. deposition time of 250 s, ionic strength of 0.2 mol L-1 and oxidant mercury (II) concentration of 40 mg L-1). A linear relationship between the stripping response and the logarithm of the bacterial concentration was observed in the range of 2.3 x 10 to 2.3 x 10(7) cfu mL(-1). In addition, the potentiometric stripping technique gave a distinct response to the SRB, but had no obvious response to Escherichia coli. The measurement system has a potential for further applications and provides a facile and sample method for detection of pathogenic bacteria. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.
Resumo:
Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.
Resumo:
There are four chapters in this dissertation. The first chapter briefly synthesizes the basic theories, methods and present-day applying situation of environmental magnetism. The second chapter probes into the magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea and its response to marine environmental changes, using the muddy sediment of Core YSDP103 formed in the shelf since about 13 ka BP. The third chapter illustrates the high-resolution early diagenetic processes by investigating the rapidly deposited muddy sediments during the last 6 ka in Cores SSDP-102 and SSDP-103 from the near-shore shelf of Korea Strait. The fourth chapter presents the results of detailed rock magnetic investigation of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea in an attempt to provide environmental magnetic evidence for the provenance of the fine-grained deposit. Core YSDP103 was retrieved in the muddy deposit under the cold eddy of the southeastern South Yellow Sea, and the uppermost 29.79 m core represents the muddy sediments formed in the shelf since about 13 ka BP. The lower part from 29.79 to 13.35 m, called Unit A2, was deposited during the period from the post-glacial transgression to the middle Holocene (at about 6 ~(14)C ka BP) when the rising sea level reached its maximum, while the upper part above 13.35 m (called Unit Al) was deposited in a cold eddy associated with the formation of the Yellow Sea Warm Current just after the peak of post-glacial sea level rise. For the the uppermost 29.79 m core, detailed investigation of rock-magnetic properties and analyses of grain sizes and geochemistry were made. The experimental results indicate that the magnetic mineralogy of the core is dominated by magnetite, maghemite and hematite and that, except for the uppermost 2.35 m, the magnetic minerals were subject to reductive diagenesis leading to significant decline of magnetic mineral content and the proportion of low-coercivity component. More importantly, ferrimagnetic iron sulphide (greigite) is found in Unit A2 but absent in Unit Al, suggesting the control of marine environmental conditions on the magnetic mineral diagenesis. Magnetic parameters show abrupt changes across the boundary between the Unit Al and A2, which reflects a co-effect of environmental conditions and primary magnetic components of the sediments on the diagenesis. Alternating zones of high and low magnetic parameters are observed in Unit A2 of Core YSDP103, which is presumably due to periodic changes of the concentration and/or grain size of magnetic minerals carried into the study area. Cores SSDP-102 and SSDP-103, two studied sediment cores from the Korea Strait contain mud sequences (14 m and 32.62 m in thickness) that were deposited during the last 6,000 years. Analyses of grain sizes and geochemistry of the cores have demonstrated that the sediments have uniform lithology and geochemical properties, however, marked down-core changes in magnetic properties suggest that diagenesis has significantly impacted the magnetic properties. An expanded view of early diagenetic reactions that affect magnetic mineral assemblages is evident in these rapidly deposited continental shelf sediments compared to deep-sea sediments. The studied sediments can be divided into four descending intervals, based on magnetic property variations. Interval 1 is least affected by diagenesis and has the highest concentrations of detrital magnetite and hematite, and the lowest solid-phase sulfur contents. Interval 2 is characterized by the presence of paramagnetic pyrite and sharply decreasing magnetite and hematite concentrations, which suggest active reductive dissolution of detrital magnetic minerals, the absolute minimum abundance of magnetite is reached at the end of this interval. Interval 3 is marked by a progressive loss of hematite with depth, and at the base of this interval, 82% to 88% of the hematite component was depleted and the bulk magnetic mineral concentration was reduced to the lowest value in the entire studied mud section. Interval 4 has an increasing down-core enhancement of authigenic greigite, which is interpreted to have formed due to arrested pyritization resulting from consumption of pore water sulfate with depth. This is the first clear demonstration from an active depositional environment for a delay of thousands of years for acquisition of a magnetization carried by greigite. This detailed view of diagenetic processes in continental shelf sediments suggests that studies of geomagnetic field behavior from such sediments should be conducted with care. Paleoceanographic and paleoclimatic studies based on the magnetic properties of shelf sediments with high sedimentation rates like those in the Korea Strait are also unlikely to provide a meaningful signature associated with syn-depositional environmental processes. The rock magnetic properties of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea, an area surrounded by sands, are investigated with a view to providing information on the sediment provenance. Multiple magnetic parameters such as magnetic susceptibility (%), anhysteretic remanent magnetization (ARM), saturation rernanent magnetization (SIRM), coercivities of SIRM (Her), and S ratios (relative abundance of low-coercivity magnetic minerals) are measured for all 179 surface samples, and partial representative samples are examined for their magnetic hysteresis parameters, temperature-dependence of magnetic susceptibility and x-ray diffraction spectra. Our research indicates that the magnetic mineralogy is dominated by magnetite with a small amount of hematite and is primarily of pseudo-single domain (PSD) to multidomain (MD) nature with a detrital origin. In the surface sediments, the granulometry of magnetic fractions is basically independent of grain sizes of the sediment containing the magnetic grains, and the composition of magnetic minerals remains almost homogeneous, that is, with a relatively constant ratio of low to high coercivity fraction throughout the area. The magnetic concentration in the study area generally decreases to the east or southeast accompanied by magnetic-particle fining to the east or to the northeast. The geographic pattern of magnetic properties is most reasonably explained by a major source of sediment jointly from the erosion of the old Huanghe River deposit and the discharge of the Changjiang River. The rock magnetic data facilitate understanding of the transport mechanism of fine-grained sediments in the outer shelf of the East China Sea.
Resumo:
A novel bonded phase for reversed-phase HPLC was synthesized in two steps. Octylamine was first reacted with beta-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (beta -ECTS) and then the intermediate product was coupled onto porous silica. The prepared packing was characterized by elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes and methanol-water as binary mobile phase. The results showed that the stationary phase has excellent chromatographic properties and is resistant to hydrolysis between pH = 2 similar to 8. It can be used efficiently for the separation of basic compounds.
Resumo:
The applicability of capillary electrophoresis/frontal analysis (CE/FA) for determining the binding constants of the drugs propranolol (PRO) and verapamil (VER) to human serum albumin (HSA) was investigated. After direct hydrodynamic injection of a drug-HAS mixture solution into a coated capillary (32 cm x 50 mu m i.d.), the basic drug was eluted as a zonal peak with a plateau region under condition of phosphate buffer (pH 7.4; ionic strength 0.17) at 12 kV positive running voltage. The unbound drug concentrations measured from the plateau peak heights had good correlation coefficients, r > 0.999. Employing the Scatchard plot, the Klotz plot and nonlinear regression, the drug protein binding parameters, the binding constant and the number of binding sites on one protein molecule, were obtained. The binding constant obtained was compared to a reported equilibrium dialysis result and they are basically in good agreement.