941 resultados para Bar KochbaBar Kochba
Resumo:
Varying the parameters of the (X) over bar chart has been explored extensively in recent years. In this paper, we extend the study of the (X) over bar chart with variable parameters to include variable action limits. The action limits establish whether the control should be relaxed or not. When the (X) over bar falls near the target, the control is relaxed so that there will be more time before the next sample and/or the next sample will be smaller than usual. When the (X) over bar falls far from the target but not in the action region, the control is tightened so that there is less time before the next sample and/or the next sample will be larger than usual. The goal is to draw the action limits wider than usual when the control is relaxed and narrower than usual when the control is tightened. This new feature then makes the (X) over bar chart more powerful than the CUSUM scheme in detecting shifts in the process mean.
Resumo:
This paper deals with the joint economic design of (x) over bar and R charts when the occurrence times of assignable causes follow Weibull distributions with increasing failure rates. The variable quality characteristic is assumed to be normally distributed and the process is subject to two independent assignable causes (such as tool wear-out, overheating, or vibration). One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. A cost model is developed and a non-uniform sampling interval scheme is adopted. A two-step search procedure is employed to determine the optimum design parameters. Finally, a sensitivity analysis of the model is conducted, and the cost savings associated with the use of non-uniform sampling intervals instead of constant sampling intervals are evaluated.
Resumo:
When joint (X) over bar and R charts are in use, samples of fixed size are regularly taken from the process, and their means and ranges are plotted on the (X) over bar and R charts, respectively. In this article, joint (X) over bar and R charts have been used for monitoring continuous production processes. The sampling is performed, in two stages. During the first stage, one item of the sample is inspected and, depending on the result, the sampling is interrupted if the process is found to be in control; otherwise, it goes on to the second stage, where the remaining sample items are inspected. The two-stage sampling procedure speeds up the detection of process disturbances. The proposed joint (X) over bar and R charts are easier to administer and are more efficient than the joint (X) over bar and R charts with variable sample size where the quality characteristic of interest can be evaluated either by attribute or variable. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
When the (X) over bar chart is in use, samples are regularly taken from the process, and their means are plotted on the chart. In some cases, it is too expensive to obtain the X values, but not the values of a correlated variable Y. This paper presents a model for the economic design of a two-stage control chart, that is. a control chart based on both performance (X) and surrogate (Y) variables. The process is monitored by the surrogate variable until it signals an out-of-control behavior, and then a switch is made to the (X) over bar chart. The (X) over bar chart is built with central, warning. and action regions. If an X sample mean falls in the central region, the process surveillance returns to the (Y) over bar chart. Otherwise. The process remains under the (X) over bar chart's surveillance until an (X) over bar sample mean falls outside the control limits. The search for an assignable cause is undertaken when the performance variable signals an out-of-control behavior. In this way, the two variables, are used in an alternating fashion. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A study is performed to examine the economic advantages of using performance and surrogate variables. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The usual practice in using a control chart to monitor a process is to take samples of size n from the process every h hours This article considers the properties of the XBAR chart when the size of each sample depends on what is observed in the preceding sample. The idea is that the sample should be large if the sample point of the preceding sample is close to but not actually outside the control limits and small if the sample point is close to the target. The properties of the variable sample size (VSS) XBAR chart are obtained using Markov chains. The VSS XBAR chart is substantially quicker than the traditional XBAR chart in detecting moderate shifts in the process.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The results of a search for squarks and gluinos using data from p over(p, ̄) collisions recorded at a center-of-mass energy of 1.96 TeV by the DØ detector at the Fermilab Tevatron Collider are reported. The topologies analyzed consist of acoplanar-jet and multijet events with large missing transverse energy. No evidence for the production of squarks or gluinos was found in a data sample of 310 pb-1. Lower limits of 325 and 241 GeV were derived at the 95% C.L. on the squark and gluino masses, respectively, within the framework of minimal supergravity with tan β = 3, A0 = 0, and μ < 0. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This study was conducted to comparatively evaluate, in a prospective and randomized manner, 2 techniques for providing double-gloving protection during arch bar placement for intermaxillary fixation. Materials and Methods: A total of 42 consecutive patients in whom application of an Erich bar was indicated for intermaxillary fixation were equally divided into 2 groups. In group 1, 2 sterile surgical gloves were used; in group 2, a nonsterile disposable inner glove was used under a sterile surgical glove. Wilcoxon, Mann-Whitney, Kruskal-Wallis, and binomial statistical tests were used to analyze the findings. Results: A total of 103 perforations were found in the outer gloves (47 in group 1 and 56 in group 2), along with 5 perforations in inner gloves in both groups (α = .01). No significant statistical difference was found between groups in terms of inner glove perforations (α = .05). The nondominant hand presented with 70.9% of the perforations, statistically significant to 1%. Conclusions: Both double-gloving techniques were found to provide effective clinician protection. The use of a nonsterile disposable glove under the surgical glove is possible for less-invasive procedures, offering the same safety as using 2 sterile surgical gloves while decreasing operational costs. This method does not eliminate the need to change gloves when a perforation is suspected or noted during the surgery, however. © 2007 American Association of Oral and Maxillofacial Surgeons.
Resumo:
We search for decays of Kaluza-Klein excitations of the graviton in the Randall-Sundrum model of extra dimensions to e+e- and in 1 fb-1 of pp collisions at s=1.96 TeV collected by the D0 detector at the Fermilab Tevatron. We set 95% confidence level upper limits on the production cross section times branching fraction, which translate into lower limits on the mass of the lightest excitation between 300 and 900 GeV for values of the coupling k/M Pl between 0.01 and 0.1. © 2008 The American Physical Society.