847 resultados para Bannister, AMy
Resumo:
Aims/hypothesis: SMAD proteins are involved in multiple signalling pathways and are key modulators of gene expression. We hypothesised that genetic variation in selected SMAD genes contributes to susceptibility to diabetic nephropathy. Methods: We selected 13 haplotype tag (ht) single nucleotide polymorphisms (SNPs) from 67 variants identified by resequencing the SMAD2 and SMAD3 genes. For SMAD1, SMAD4 and SMAD5 genes, genotype data were downloaded for 217 SNPs from Phase II of the International HapMap project. Of these, 85 SNPs met our inclusion criteria, resulting in the selection of 13 tag SNPs for further investigation. A case-control approach was employed, using 267 nephropathic patients and 442 controls with type 1 diabetes from Ireland. Two further populations (totalling 1,407 patients, 2,238 controls) were genotyped to validate initial findings. Genotyping was conducted using iPLEX, TaqMan and gel electrophoresis.
Results: The distribution of genotypes was in Hardy-Weinberg equilibrium. Analysis by the ? 2 test of genotype and allele frequencies in patients versus controls in the Irish population (n?=?709) revealed evidence for the association of one allele at 5% level of significance (rs10515478, p uncorrected?=?0.006; p corrected?=?0.04). This finding represents a relatively small difference in allele frequency of 6.4% in the patient group compared with 10.7% in the control group; this difference was not supported in subsequent investigations using DNA from European individuals with similar phenotypic characteristics.
Conclusions/interpretation: We selected an appropriate subset of variants for the investigation of common genetic risk factors and assessed SMAD1 to SMAD5 genes for association with diabetic nephropathy. We conclude that common polymorphisms in these genes do not strongly influence genetic susceptibility to diabetic nephropathy in white individuals with type 1 diabetes mellitus.
Resumo:
Previous reports have shown that DNA methylation profiles within primary human malignant tissues are altered when these cells are transformed into cancer cell lines. However, it is unclear if similar differences in DNA methylation profiles exist between DNA derived from peripheral blood leukocytes (PBLs) and corresponding Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs). To assess the utility of LCLs as a resource for methylation studies we have compared DNA methylation profiles in promoter and 5' regions of 318 genes in PBL and LCL sample pairs from patients with type 1 diabetes with or without nephropathy. We identified a total of 27 (similar to 8%) genes that revealed different DNA methylation profiles in PBL compared with LCL-derived DNA samples. In conclusion, although the profiles for most promoter regions were similar between PBL-LCL pairs, our results indicate that LCL-derived DNA may not be suitable for DNA methylation studies at least in diabetic nephropathy.
Resumo:
Aims Diabetic nephropathy is a leading cause of end-stage renal disease. The transforming growth factor beta-bone morphogenic protein (BMP) pathway is implicated in the pathogenesis of diabetic nephropathy. The BMP2, BMP4 and BMP7 genes are located near linkage peaks for renal dysfunction, and we hypothesize that genetic polymorphisms in these biological and positional candidate genes may be risk factors for diabetic kidney disease.
Resumo:
Loci contributing to complex disease have been identified by focusing on genome-wide scans utilising non-synonymous single nucleotide polymorphisms (nsSNPs). We employed Illumina’s HNS12 BeadChip (13,917 high-value SNPs) which was specifically designed to capture nsSNPs and ideally complements more dense genome-wide association studies that fail to consider many of these putatively functional variants. The HNS12 panel also includes 870 tag SNPs covering the major histocompatibility region. All individuals genotyped in this study were Caucasians with (cases) and without (controls) diabetic nephropathy. About 449 individuals with type 2 diabetes (203 cases, 246 controls) were genotyped in the initial study. 1,467 individuals with type 1 diabetes (718 cases, 749 controls) were genotyped in the follow up study. 11,152 SNPs were successfully analysed and ranked for association with diabetic nephropathy based on significance (P) values. The top ranked 32 SNPs were subsequently genotyped using MassARRAY iPLEX™ and TaqMan technologies to investigate association of these polymorphisms with nephropathy in individuals with type 1 diabetes. The top ranked nsSNP, rs1543547 (P = 10-5), is located in RAET1L, a major histocompatibility class I-related gene at 6q25.1. Of particular interest, multiple nsSNPs within the top ranked (0.2%) SNPs are within several plausible candidate genes for nephropathy on 3q21.3 and 6p21.3.
Evaluation of Five Interleukin Genes for Association with End-Stage Renal Disease in White Europeans
Resumo:
Background: Genetic variation within interleukin genes has been reported to be associated with end-stage renal disease (ESRD). These findings have not been consistently replicated. No study has yet reported the comprehensive investigation of IL1A, IL1B, IL1RN, IL6 and IL10 genes. Methods: 664 kidney transplant recipients (cases) and 577 kidney donors (controls) were genotyped to establish if common variants in interleukin genes are associated with ESRD. Single nucleotide polymorphism (SNP) genotype data for each gene were downloaded for a northern and western European population from the International HapMap Project. Haploview was used to visualize linkage disequilibrium and select tag SNPs. Thirty SNPs were genotyped using MassARRAY (R) iPLEX Gold technology and data were analyzed using the chi(2) test for trend. Independent replication was conducted in 1,269 individuals with similar phenotypic characteristics. Results: Investigating all common variants in IL1A, IL1B, IL1RN, IL6 and IL10 genes revealed a statistically significant association (rs452204 p(empirical) = 0.02) with one IL1RN variant and ESRD. This IL1RN SNP tags three other variants, none of which have previously been reported to be associated with renal disease. Independent replication in a separate transplant population of comparable size did not confirm the original observation. Conclusions: Common variants in these five candidate interleukin genes are not major risk factors for ESRD in white Europeans. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
BACKGROUND & AIMS: Insulin-like growth factor (IGF) axis plays a key role in cell development, proliferation, and survival and is implicated in the etiology of several cancers. Few studies have examined the relationship between genetic variation of this axis and esophageal adenocarcinoma (EAC) or its precursors. METHODS: In a population-based case-control study, we investigated the association of common polymorphisms of IGF-1, IGF-2, IGF-1 receptor, IGF binding protein -3, growth hormones (GH) 1 and GH2, and GH receptor with reflux esophagitis (RE), Barrett esophagus (BE), and EAC. Two hundred and thirty RE, 224 BE, 227 EAC cases, and 260 controls were studied. Gene polymorphisms were identified using publicly available online resources; 102 IGF axis tag and putatively functional single-nucleotide polymorphisms (SNPs) were analyzed using MassARRAY iPLEX and Taqman assays. Results were analyzed using Haploview.
RESULTS: Three polymorphisms were disease-associated. IGF1 SNP rs6214 was associated with BE (adjusted P = .039). Using GG genotype as reference, odds ratio for BE in AA (wild-type) was 0.43 (95% confidence interval [CI], 0.24-0.75). GH receptor SNP rs6898743 was associated with EAC (adjusted P = .0112). With GG as reference, odds ratio for EAC in CC (wildtype) genotype was 0.42 (95% CI, 0.23-0.76). IGF1 (CA)(17) 185-bp allele was associated with RE (adjusted P = .0116). Using IGF1(non17) as reference, odds ratio for RE in IGF1(17) carriers was 7.29 (95% CI, 1.57-46.7).
CONCLUSIONS: In this study, 3 polymorphisms of IGF genes were associated with EAC or its precursors. These polymorphisms may be markers of disease risk; independent validation of our findings is required. These results suggest the IGF pathway is involved in EAC development.
Resumo:
beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.
Resumo:
Several studies have provided compelling evidence implicating the Notch signalling pathway in diabetic nephropathy. Co-regulation of Notch signalling pathway genes with GREM1 has recently been demonstrated and several genes involved in the Notch pathway are differentially expressed in kidney biopsies from individuals with diabetic nephropathy. We assessed single-nucleotide polymorphisms (SNPs; n = 42) in four of these key genes (JAG1, HES1, NOTCH3 and ADAM10) for association with diabetic nephropathy using a case-control design.
Tag SNPs and potentially functional SNPs were genotyped using Sequenom or Taqman technologies in a total of 1371 individuals with type 1 diabetes (668 patients with nephropathy and 703 controls without nephropathy). Patients and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK (http://pngu.mgh.harvard.edu/similar to purcell/plink/) and haplotype frequencies in patients and controls were compared. Adjustment for multiple testing was performed by permutation testing.
In analyses stratified by centre, we identified six SNPs, rs8708 and rs11699674 (JAG1), rs10423702 and rs1548555 (NOTCH3), rs2054096 and rs8027998 (ADAM10) as being associated with diabetic nephropathy before, but not after, adjustment for multiple testing. Haplotype and subgroup analysis according to duration of diabetes also failed to find an association with diabetic nephropathy.
Our results suggest that common variants in JAG1, HES1, NOTCH3 and ADAM10 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes from involvement in the pathogenesis of diabetic nephropathy.
Resumo:
Gremlin, a cell growth and differentiation factor, promotes the development of diabetic nephropathy in animal models, but whether GREM1 gene variants associate with diabetic nephropathy is unknown. We comprehensively screened the 5' upstream region (including the predicted promoter), all exons, intron-exon boundaries, complete untranslated regions, and the 3' region downstream of the GREM1 gene. We identified 31 unique variants, including 24 with a minor allele frequency exceeding 5%, and 9 haplotype-tagging single nucleotide polymorphisms (htSNPs). We selected one additional variant that we predicted to alter transcription factor binding. We genotyped 709 individuals with type 1 diabetes of whom 267 had nephropathy (cases) and 442 had no evidence of kidney disease (controls). Three individual SNPs significantly associated with nephropathy at the 5% level, and two remained significant after adjustment for multiple testing. Subsequently, we genotyped a replicate population comprising 597 cases and 502 controls: this population supported an association with one of the SNPs (rs1129456; P = 0.0003). Combined analysis, adjusted for recruitment center (n = 8), suggested that the T allele conferred greater odds of nephropathy (OR 1.69; 95% CI 1.36 to 2.11). In summary, the GREM1 variant rs1129456 associates with diabetic nephropathy, perhaps explaining some of the genetic susceptibility to this condition.
Resumo:
Chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-C motif) receptor 5 are implicated in the pathogenesis of diabetic nephropathy (DN). We hypothesize that variants in these genes may be associated with DN. The CCL5 and chemokine receptor type 5 (CCR5) genes were resequenced, variants identified (n=58), allele frequencies determined in 46 individuals (92 chromosomes) and efficient haplotype tag single-nucleotide polymorphisms (htSNPs) selected to effectively evaluate the common variation in these genes. One reportedly functional gene variant and eight htSNPs were genotyped in a case-control association study involving Caucasian individuals with type 1 diabetes (267 cases with DN and 442 non-nephropathic diabetic controls). Genotyping was performed using MassARRAY iPLEX, TaqMan, gel electrophoresis and direct capillary sequencing. After correction for multiple testing, there were no statistically significant associations between variants in the CCL5 and CCR5 genes and DN. Journal of Human Genetics (2010) 55, 248-251; doi:10.1038/jhg.2010.15; published online 5 March 2010
Resumo:
Background. Vitamin D and its analogues are reported to have renoprotective effects in chronic kidney disease including diabetic nephropathy (DN). Vitamin D3 is converted to 1,25(OH) D3 by CYP2R1 and CYP27B1. The biological action of 1,25(OH) D3 is mediated via its receptor. VDR, CYP27B1 or CYP2R1 gene variants could modify the biological activity of vitamin D3. We have conducted the first case- control association study to determine the relationship between polymorphisms in VDR, CYP27B1 and CYP2R1 genes, and the risk of DN in individuals with type 1 diabetes.