486 resultados para Balloon ascensions.
Resumo:
This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.
Resumo:
During the Atlantic expedition potential gradient, small ion density and space charge density have been recorded. Laborious efforts have been taken for receiving an exact estimation of the reduction factor for the field measurements. The mean value of the potential gradient on the free Atlantic Ocean was 105 V/m. The mean daily course is in very good agreement with the results of the Carnegie Institution. Even records taken on individual days near the quator show this course. For the first time it has been attempted to correlate the potential gradient at sea and the voltage between ionosphere and earth measured over land. A narrow relation has been found in 10 cases of balloon ascents with radiosondes. A further remarkable result is, that the short periodical fluctuations of the air electric field at sea with periods of 2 to 20 minutes have amplitudes of the magnitude of the mean field strength and exist all over the oceans. Recordings of the space charge density show, that positively charged air parcels drift in the first hectometer of the air near the sea surface and produce the fluctuation of the potential gradient. A period analysis did not indicate a recognizable relation to the wind velocity up to now, although an effect of air turbulence must be involved. The concentration of small ions also has been measured occasionally. With this and mean values of the potential gradient the air earth curent density has been computed. With n+ = 310 cm**-3, n- = 220 cm**-3 the air conductivity would be Lambda = 1,14 * 10**-14 Ohm**-1 m**-1. These values are smaller than values of other authors by a factor of 2 or 3. Therefore the computed air earth current density is also smaller. The discrepancy could not be explained yet.