960 resultados para BIS(4-PYRIDYL)DISULFIDE-MODIFIED GOLD ELECTRODE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The compound [Pd(bzan)(mu -N-3)](2) 1, bzan = benzylideneaniline, was prepared from [Pd(bzan) (mu -OOCCH3)](2) by an anion exchange reaction. The 1,3-dipolar cycloaddition of carbon disulfide to the bridged coordinated azide in the cyclometallated compound I was investigated. The species resulting from this reaction, di(mu -N,S-1,2,3,4-thiatriazol-5-thiolate)bis[(benzylideneaniline)palladium(II)] 2, was characterized by IR spectroscopy and X-ray diffraction. The compound 2 is a dimer containing two [Pd(benzylideneaniline)] moieties connected by two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination geometry for the palladium atoms.
Resumo:
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel-type manganese oxide (lambda-MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline-earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6 x 10(-5) - 1.0 x 10(-2) mol L-1 with a slope 78.9 +/- 0.3 mV dec(-1) over a wide pH range 7 - 10 (Tris buffer), without interference of other alkali and alkaline-earth metals. For a flow rate of 5.0 mL min(-1) and a injection sample volume of 408.6 muL, the relative standard deviation for repeated injections of a 5.0 x 10(-4) mol L-1 lithium ions was 0.3%.
Resumo:
Ceftazidime is hydrolysed only slowly at pH 10 at room temperature. This is indicated by a small cathodic stripping voltammetric peak obtained at pH 10 at a hanging mercury drop electrode at about -0.6 V which corresponds to the reduction of the hydrolysis product. This peak is enhanced more than tenfold by the addition of poly-L-lysine (PLL) to the electrolyte solution. The optimum accumulation potential is between 0 and -0.1 V: the size of the peak decreases steadily, however, as the accumulation potential is moved to more negative potentials and is about one-sixth the size for accumulation at -0.4 V. Existing knowledge of the organic chemistry of cephalosporins indicates that the accumulation must involve an aminolysis reaction of the unprotonated PLL with the beta-lactam ring of the ceftazidime. The limit of detection (3 sigma) in standard solutions was calculated to be 1 x 10(-10) mol l(-1). The detection limit in buffer solution containing 1% of urine was calculated to be 5 x 10(-9) mol l(-1), i.e. 5 x 10(-6) mol l(-1) in the urine. (C) 1999 Elsevier B.V. B.V. AU rights reserved.
Resumo:
Electrolysis has been examined as a method of synthesis for [(L)(dppb)Ru(mu-Cl)(3)RuCl(dppb)] complexes, where dppb = 1,4-bis(diphenylphosphino)butane and L = pyridine (py), 4-methylpyridine (4-pic) or dimethyl sulfoxide (DMSO), by using [RuCl3(dppb)(L)] as precursors. The products of the electrolysis were characterized by P-31-{H-1} NMR, cyclic voltammetry and near infrared spectroscopy. The presence of the [Ru2Cl5(dppb)(2)] complex in the electrochemical cell suggests a mechanism by which the starting original species from the bulk solution reacts with the reduced form [RuCl2(dppb)(L)] generated at the surface of the electrode. The crystal structure of the precursor mer-[RuCl3(dppb)(4-pic)] was determined by X-ray diffraction.
Resumo:
The oxidation of a reactive dye, Cibacron Blue F3GA, CB, (C.I. 61211), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode occurs in two steps at 2.0 < pH < 10 involving one electron transfer each to the amine group leading to the imide derivative. Stable films of poly-L-lysine (PLL) in the presence of glutaraldehyde (GA) 97.5%:2.5% on glassy carbon electrode can be used to detect low levels of dye using its oxidation peak at +0.75V by voltammetry. Linear calibration graphs were obtained for the CB reactive dye, from 1.0 X 10(-6) to 1.0 X 10(-5) mol L-1 in B-R buffer, pH 2.0, using a pre-concentration off-line during 10 min. The detection limit (3 sigma/slope) was calculated to be 4.5 X 10(-8) mol L-1. Films of PLL can readily be applied for the determination of CB dye bearing aminoanthraquinone as chromophore and chlorotriazinyl as reactive group at concentrations at least 100 times lesser than using a glassy carbon electrode without modification. The method described was applied for the determination of CB dye in tap water and raw water collected from the municipal treatment plant with a recovery of 89.2% +/- 5.4 and 88.0% +/- 6.5, respectively. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The 1,3-dipolar cycloaddition of carbon disulfide to the coordinated azide in the cyclometallated compound [Pd(dmba)(N-3)](2) (1), dmba = N,N-dimethylbenzylamine, was investigated. The compound obtained di(mu, N,S-1,2,3,4-thiatriazole-5-thiolate)-bis[(N,N-dimethylbenzylamine-C-2,N)palladium(II)] (2), was characterized by IR spectroscopy and X-ray diffraction. Complex (2) is dimeric with the two [Pd(N,N-dimethylbenzylamine)] moieties being connected by the two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination for the palladium atoms.
Resumo:
The voltammetric determination of rutin in 0.04 mol l(-1) B-R buffer (pH 4.0) by square wave voltammograms (+0.41 V vs. Ag/AgCl(sat.)) at a poly glutamic acid modified glassy carbon electrode was found to be several orders of magnitude lower than that on a bare glassy carbon electrode. Rutin can be preconcentrated on the films of poly glutamic acid and presented linear relationship from concentration of 7 x 10(-7) to 1 x 10(-5) mol l(-1) in 0.04 mol l(-1) B-R buffer pH 4.0. The method was successfully applied to the determination of rutin in pharmaceutical formulation without any pretreatment.
Resumo:
Prussian blue [PB, iron(III) hexacyanoferrate(II)] films are effective for the electrocatalysis of the persulfate (peroxodisulfate)/sulfate redox system. This has been exploited in the voltammetric determination of persulfate anions using a PB-modified platinum disc electrode. A linear correlation between electrocatalytic current and persulfate concentration was found for the range 5 x 10(-5) to 3 x 10(-3) mol dm(-3), using 0.100 mol dm(-3) potassium chloride as supporting electrolyte at pH 4. This analytical method has the advantages of speed and ease of operation in relation to traditional titrimetric methods for persulfate determination. The applicability of the method to the determination of persulfate in a commercial hair bleaching 'booster' product is demonstrated. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A simple and attractive method for quantification of ascorbic acid (AA) in beers, soda, natural juices and commercial vitamin C tablets was achieved by combining Bow injection analysis and amperometric detection. An array of gold microelectrodes electrochemically modified by deposition of palladium was employed as working electrode which was almost unaffected by fouling effects. Ascorbic acid was quantified in beverages and vitamin tablets using amperometric differential measurements. This method is based on three steps involving the flow injection of: 1) the sample plus a standard addition of AA, 2) the pure sample, and 3) the enzymatically-treated sample. The enzymatic treatment was carried out with Cucumis sativus tissue, which is a rich source of ascorbate oxidase, at pH 7. The calibration plots for freshly prepared ascorbic acid standards were very linear in the concentration range of 0.18-1.8 mg L-1 with a relative standard deviation (RSD) < 1%, while for real samples the deviations were between 2.7% to 8.9%.
Resumo:
Glassy carbon electrodes were coated with films of poly( glutamic acid) ( PG), and the modified electrode proved to be very effective in the oxidation of caffeic acid. The performance of the film was also tested with ascorbic acid, coumaric acid, ferulic acid, sinapic acid and chlorogenic acid. At pH 5.6, all the hydroxycinnamic acids yield a higher peak current intensity when oxidized after incorporation in the PG-modified electrode, and only the oxidation of ascorbic acid exhibits overpotential reduction. At pH 3.5 only caffeic and chlorogenic acid are incorporated in the modified electrode and exhibit a well-defined oxidation wave at +0.51 V and +0.48 V, which is the base for their determination. Linear calibration graphs were obtained from 9 x 10(-6) mol L-1 to 4 x 10(-5) mol L-1 caffeic acid by linear voltammetric scan and from 4 x 10(-6) mol L-1 to 3 x 10(-5) mol L-1 by square wave voltammetric scan. The method was successfully applied to the determination of caffeic acid in red wine samples without interference from other hydroxycinnamic acids or ascorbic acid.
Resumo:
A label-free electrochemical detection method for DNA hybridization based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes is reported. Synthetic single-stranded 27-mer oligonucleotides (probe) have been immobilized at 2,5-bis(2-thienyl)-N-(3-phosphorylpropyl)pyrrole film formed by electropolymerization on the previously formed polypyrrole layer. The 27- or 18-mer target oligonucleotides were monitored via the electrochemically driven anion exchange of the inner polypyrrole film. The performance of the miniaturized DNA biosensor system was studied in respect to selectivity, sensitivity, reproducibility, and regeneration of the sensor. Control experiments were performed with a noncomplementary target of 27-mer DNA and 12 base-pair mismatched 18-mer sequences, respectively, and did not show any unspecific binding. Under optimized experimental conditions, the label-free electrochemical biosensor enabled the detection limits of 0.16 and 3.5 fmol for the 18- and 2 7-mer DNA strand, respectively. Furthermore, we demonstrate reusability of the electrochemical DNA biosensor after successful recovery of up to 100% of the original signal by regenerating the DNA label-free electrode with 50 mM HCl at room temperature.
Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode
Resumo:
The PB film-modified electrode was used as an amperometric detector for flow injection analysis of ascorbic acid. The modified electrode detector showed good sensitivity, stability and reproducibility. The calibration curve for ascorbic acid was linear over the concentration range from 5.0 x 10(-6) to 1.0 x 10(-3) mol l(-1) with a slope of 19.9 mA mol(-1) per litre and a correlation coefficient of 0.999. The detection limit of this method was 2.49 x 10(-6) mol l(-1). The relative standard deviation of six replicate injections of 2.5 x 10(-4) mol l(-1) ascorbic acid was 2.5%. The results obtained for ascorbic acid determination in pharmaceutical products are in good agreement with those obtained by using the procedure involving the reaction between triiodide and ascorbic acid. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
A mercury-free electrode chemically modified with carbon paste containing dimethylglyoxime was used for determination of nickel in fuel ethanol. The instrumental parameters and composition of the modified paste were optimized. The analytical curve for nickel determination from 5.0 x 10(-9) to 5.0 x10(-7) mol(-1) was obtained using 25 min of accumulation time. The detection limit and amperometric sensitivity obtained for this method were 2.7 x 10 mol(-1) and 5.2 x 10(8) mu A mol(-1) L, respectively. The values for nickel concentration in four commercial samples of fuel ethanol were obtained in the range of 1.1 x 10(-8) to 6.9 x 10(-8) mol(-1). A comparison to graphite furnace atomic absorption spectrometry (GFAAS) was performed for nickel determination in commercial samples of ethanol.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)