912 resultados para BIOMARKER
Resumo:
Foundational cellular immunology research of the 1960s and 1970s, together with the advent of monoclonal antibodies and flow cytometry, provided the knowledge base and the technological capability that enabled the elucidation of the role of CD4 T cells in HIV infection. Research identifying the sources and magnitude of variation in CD4 measurements, standardized reagents and protocols, and the development of clinical flow cytometers all contributed to the feasibility of widespread CD4 testing. Cohort studies and clinical trials provided the context for establishing the utility of CD4 for prognosis in HIV-infected persons, initial assessment of in vivo antiretroviral drug activity, and as a surrogate marker for clinical outcome in antiretroviral therapeutic trials. Even with sensitive HIV viral load measurement, CD4 cell counting is still utilized in determining antiretroviral therapy eligibility and time to initiate therapy. New point of care technologies are helping both to lower the cost of CD4 testing and enable its use in HIV test and treat programs around the world.
Resumo:
Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of phytoplankton biomarkers and the possible presence of allochthonous biomarkers is needed, and the records of the individual biomarkers always should be considered as well.
Resumo:
There are controversies regarding the origin of Heinrich layer 3 (H3), the massive ice-rafting and meltwater event in the North Atlantic during the last glacial cycle spanning a time window between 29 and 30 kyr B.P. Some argue in favor of a Laurentide Ice Sheet source similar to other Heinrich layers, while a contending view argues for the European ice sheet source. Existing geochemical proxies such as 40Ar/39Ar, 206Pb/204Pb, or epsilon-Nd, etc., could not be used to distinguish among various sources of ice-rafted debris in H3 because of their low abundances, suggesting a background glacial sediment signal. In order to circumvent this problem a biomarker-based approach is used to characterize the provenance of H layers 2, 3, and 4 and other non-Heinrich layers. The presence of hopanes and steranes and their aromatic counterparts in the H layers is incompatible with Recent sediments and is attributed to the transportation of organic matter because of the glacial erosion of source rocks. The most diagnostic and useful signatures of this ancient organic matter in the H layers are the dominance of C34 hopanoids over C33 and the occurrence of isorenieratane along with palaerenieratane. Biomarkers signatures in H layers 2 and 3 of the Labrador Sea suggest no difference in their source. Hydrocarbon distributions suggest that these sediments were derived from the Middle to Late Ordovician and Silurian source rocks of the Hudson Bay of eastern Canada. Biomarker data of the H layer 4 from the northwest Atlantic reveal that the sediments of this layer have a similar source to the H layers in the Labrador Sea.
Resumo:
The occurrence of microbialites in post-glacial coral reefs has been interpreted to reflect an ecosystem response to environmental change. The greater thickness of microbialites in reefs with a volcanic hinterland compared to thinner microbial crusts in reefs with a non-volcanic hinterland led to the suggestion that fertilization of the reefal environment by chemical weathering of volcanic rocks stimulated primary productivity and microbialite formation. Using a molecular and isotopic approach on reef-microbialites from Tahiti (Pacific Ocean), it was recently shown that sulfate-reducing bacteria favored the formation of microbial carbonates. To test if similar mechanisms induced microbialite formation in other reefs as well, the Tahitian microbialites are compared with similar microbialites from coral reefs off Vanuatu (Pacific Ocean), Belize (Caribbean Sea, Atlantic Ocean), and the Maldives (Indian Ocean) in this study. The selected study sites cover a wide range of geological settings, reflecting variable input and composition of detritus. The new lipid biomarker data and stable sulfur isotope results confirm that sulfate-reducing bacteria played an intrinsic role in the precipitation of microbial carbonate at all study sites, irrespective of the geological setting. Abundant biomarkers indicative of sulfate reducers include a variety of terminally-branched and mid chain-branched fatty acids as well as mono-O-alkyl glycerol ethers. Isotope evidence for bacterial sulfate reduction is represented by low d34S values of pyrite (-43 to -42 per mill) enclosed in the microbialites and, compared to seawater sulfate, slightly elevated d34S and d18O values of carbonate-associated sulfate (21.9 to 22.2 per mill and 11.3 to 12.4 per mill, respectively). Microbialite formation took place in anoxic micro-environments, which presumably developed through the fertilization of the reef environment and the resultant accumulation of organic matter including bacterial extracellular polymeric substances (EPS), coral mucus, and marine snow in cavities within the coral framework. ToF-SIMS analysis reveals that the dark layers of laminated microbialites are enriched in carbohydrates, which are common constituents of EPS and coral mucus. These results support the hypothesis that bacterial degradation of EPS and coral mucus within microbial mats favored carbonate precipitation. Because reefal microbialites formed by similar processes in very different geological settings, this comparative study suggests that a volcanic hinterland is not required for microbialite growth. Yet, detrital input derived from the weathering of volcanic rocks appears to be a natural fertilizer, being conductive for the growth of microbial mats, which fosters the development of particularly abundant and thick microbial crusts.
Resumo:
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~ 300 m depth varied between 13 and 32 g/m**2/a during 2000 and 2005. Of this total flux 6-13 % was due to CaCO3, 4-21 % to refractory particulate organic carbon (POC), and 3-8 % to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5-8.8 g/m**2/a), although this varied from 27 to 67 % of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May-September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60x106 m**2/d. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.
Resumo:
Here, we present a first (low-resolution) biomarker sea-ice proxy record from the High Arctic (southern Lomonosov Ridge), going back in time to about 60 ka (MIS 3 to MIS 1). Variable concentrations of the sea-ice diatom specific highly branched isoprenoid (HBI) with 25 carbon atoms ("IP25"), in combination with the phytoplankton biomarker brassicasterol, suggest variable seasonal sea-ice coverage and open-water productivity during MIS 3. During most of MIS 2, the spring to summer sea-ice margin significantly extended towards the south, resulting in a drastic decrease in phytoplankton productivity. During the Early Holocene Climate Optimum, brassicasterol reached its maximum, interpreted as signal for elevated phytoplankton productivity due to a significantly reduced sea-ice cover. During the mid-late Holocene, IP25 increased and brassicasterol decreased, indicating extended sea-ice cover and reduced phytoplankton productivity, respectively. The HBI diene/IP25 ratios probably reached maximum values during the Bølling-Allerød warm period and decreased during the Holocene, suggesting a correlation with sea-surface temperature.
Resumo:
For the reconstruction of sea-ice variability, a biomarker approach which is based on (1) the determination of sea-ice diatom-specific highly-branched isoprenoid (IP25) and (2) the coupling of phytoplankton biomarkers and IP25 has been used. For the first time, such a data set was obtained from an array of two sediment traps deployed at the southern Lomonosov Ridge in the central Arctic Ocean at water depth of 150 m and 1550 m and recording the seasonal variability of sea ice cover in 1995/1996. These data indicate a predominantly permanent sea ice cover at the trap location between November 1995 and June 1996, an ice-edge situation with increased phytoplankton productivity and sea-ice algae input in July/August 1996, and the start of new-ice formation in late September. The record of modern sea-ice variability is then used to better interpret data from sediment core PS2458-4 recovered at the Laptev Sea continental slope close to the interception with Lomonosov Ridge and recording the post-glacial to Holocene change in sea-ice cover. Based on IP25 and phytoplankton biomarker data from Core PS2458-4, minimum sea-ice cover was reconstructed for the Bølling/Allerød warm interval between about 14.5 and 13 calendar kyr BP, followed by a rapid and distinct increase in sea-ice cover at about 12.8 calendar kyr BP. This sea-ice event was directly preceded by a dramatic freshwater event and a collapse of phytoplankton productivity, having started about 100 years earlier. These data are the first direct evidence that enhanced freshwater flux caused enhanced sea-ice formation in the Arctic at the beginning of the Younger Dryas. In combination with a contemporaneous, abrupt and very prominent freshwater/meltwater pulse in the Yermak Plateau/Fram Strait area these data may furthermore support the hypothesis that strongly enhanced freshwater (and ice) export from the Arctic into the North Atlantic could have played an important trigger role for the onset of the Younger Dryas cold reversal. During the Early Holocene, sea-ice cover steadily increased again (ice-edge situation), reaching modern sea-ice conditions (more or less permanent sea-ice cover) probably at about 7-8 calendar kyr BP.
Resumo:
When we study the variables that a ffect survival time, we usually estimate their eff ects by the Cox regression model. In biomedical research, e ffects of the covariates are often modi ed by a biomarker variable. This leads to covariates-biomarker interactions. Here biomarker is an objective measurement of the patient characteristics at baseline. Liu et al. (2015) has built up a local partial likelihood bootstrap model to estimate and test this interaction e ffect of covariates and biomarker, but the R code developed by Liu et al. (2015) can only handle one variable and one interaction term and can not t the model with adjustment to nuisance variables. In this project, we expand the model to allow adjustment to nuisance variables, expand the R code to take any chosen interaction terms, and we set up many parameters for users to customize their research. We also build up an R package called "lplb" to integrate the complex computations into a simple interface. We conduct numerical simulation to show that the new method has excellent fi nite sample properties under both the null and alternative hypothesis. We also applied the method to analyze data from a prostate cancer clinical trial with acid phosphatase (AP) biomarker.
Resumo:
Within Africa, the burden of heart failure is significant. This arises from the increase in cardiovascular disease and associated risk factors such as hypertension and diabetes, as well as causes of heart failure which are particular to sub-Saharan Africa, such as endomyocardial fibrosis. The lack of access to echocardiography and other imaging modalities, from a cost and technical perspective, combined with the predominantly rural nature of many countries with poor transport links, means that the vast majority of people never obtain an appropriate diagnosis. Similarly, research has been limited on the causes and treatment of heart failure in Africa and in particular endemic causes such as EMF and rheumatic heart disease. This review outlines the burden of heart failure in Africa and highlights the opportunity to expand diagnosis through the use of biomarkers, in particular natriuretic peptides. This builds on the success of point-of-care testing in human immunodeficiency virus and tuberculosis which have been extensively deployed in community settings in Africa.
Resumo:
BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.
METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich α2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P≤0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-α (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-βR1 (P<0.001) and α-smooth muscle actin (P=0.025) expression.
CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, β-blocker therapy, and BNP.
Resumo:
In an attempt to reduce the heart failure epidemic,screening and prevention will become an increasing focus ofmanagement in the wider at-risk population. Refining riskprediction through the use of biomarkers in isolation or incombination is emerging as a critical step in this process.The utility of biomarkers to identify disease manifestationsbefore the onset of symptoms and detrimental myocardialdamage is proving to be valuable. In addition, biomarkers thatpredict the likelihood and rate of disease progression over timewill help streamline and focus clinical efforts and therapeuticstrategies. Importantly, several recent early intervention studiesusing biomarker strategies are promising and indicate thatnot only can new-onset heart failure be reduced but also thedevelopment of other cardiovascular conditions.