975 resultados para BIODIESEL-FUEL PRODUCTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel Cell is the emerging technology of cogeneration, and has been applied successfully in Japan, U.S.A. and some OECD countries. This system produces electric power by an electrolytic process, in which chemical substances (the most utilized substances are solid oxide, phosphoric acid and molten carbonate) absorb the components H-2 and O-2 of the combustion fuel. This technology allows the recovery of residual heat, available from 200 degrees C up to 1000 degrees C (depending on the electrochemical substance utilized), which can be used for the production of steam, hot or cold water, or hot or cold air, depending on the recuperation equipment used. This article presents some configurations of fuel cell cogeneration cycles and a study of the technical and economic feasibility for the installation of the cogeneration systems utilizing fuel cell, connected to an absorption refrigeration system for st building of the tertiary sector, subject to conditions in Brazil. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various reports concerning catalytic reaction of glycerol for hydrogen production is available. However, economic analyses of this activity are not found yet. The objective of this work is to evaluate the process of hydrogen production via steam reforming of glycerol obtained through transesterification process of bio-oils. The thermochemical process of steam reforming process was determined due to high efficiency, feasibility and lower cost of design, development, operation and maintenance. These bio-oils come from feedstocks largely encountered in Brazil such as soybean, palm, castor bean, peanut and cotton seed as also come from residues such as defective coffee, tallow beef, wastewater (scum) and others. Various findings were obtained such as potential of production of glycerol utilizing residues (considering available amounts in the Brazilian states) and some vegetable feedstocks (considering production of harvested feedstock per hectare). Subsequently, production of hydrogen via steam reforming of generated glycerol, and foreseen electricity production via fuel cells were also determined. An additional estimation was paid for production of H-BIO, an innovative fuel developed by PETROBRAS (Petroleo Brasileiro S.A.), where hydrogen and bio-fuel are utilized and generates propane as co-product. About this work, it was concluded that high amounts of hydrogen and electricity could be produced considering an enormous potential from each cited feedstock being an attractive alternative as distributed electricity source and as an additional source for some activities, inclusively those that produce their own feedstocks such as abattoirs (beef tallow), and wastewater treatment plants. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of biodiesel is increasing as an attractive fuel due to the depleting fossil fuel resources and environmental degradation. This paper presents results of an investigation on the potentials of biodiesel as an alternative fuel and main substitute of diesel oil, comparing the CO2 emissions of the main fuels in the Brazilian market with those of biodiesel, in pure form or blended in different proportions with diesel oil (2%, 5%, and 20%, called B2, B5, and B20, respectively). The results of the study are shown in ton CO2 per m(3) and ton CO2 per year of fuel. The fuels were analyzed considering their chemical composition, stoichiometric combustion parameters and mean consumption for a single vehicle. The fuels studied were: gasoline, diesel oil, anhydrous ethyl alcohol (anhydrous ethanol), and biodiesel from used frying oil and from soybean oil. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. With data provided by the Brazilian Association of Automotive Vehicle Manufacturers (ANFAVEA) for the number of vehicles produced in Brazil, the emissions of CO2 for the national fleet in 2007 were obtained per type of fuel. With data provided by the Brazilian Department of Transit (DENATRAN) concerning the number of diesel vehicles in the last five years in Brazil, the total CO2 emissions and the percentage that they would decrease in the case of use of pure biodiesel, B100, or several mixtures, B2, B5 and B20, were calculated. Estimates of CO2 emissions for a future scenario considering the mixtures B5 and B20 are also included in this article. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to describe the benefits of sugar cane ethanol in Brazil, appointing the productivity of this type of fuel based on hectares of plantation, its carbon dioxide cycle and the contribution to reduce the greenhouse effect. In the following step the uses of ethanol for hydrogen production by steam reforming is analyzed and some comparison with natural gas steam reforming is performed. The sugar cane industry in Brazil, in a near future, in the hydrogen era, could be modified according to our purpose, since besides the production of sugar, and ethylic and anhydric alcohol, Brazilian sugar cane industry will also be able to produce biohydrogen.Fuel cells appear like a promising technology for energy generation. Among several technologies in the present, the PEMFC (proton exchange membrane fuel cell) is the most appropriate for vehicles application, because it combines durability, high power density, high efficiency, good response and it works at relatively low temperatures. Besides that it is easy to turn it on and off and it is able to support present vibration in vehicles. A PEMFC's problem is the need of noble catalysts like platinum. Another problem is that CO needs to be in low concentration, requiring a more clean hydrogen to avoid fuel cell deterioration.One part of this paper was developed in Stockholm, where there are some buses within the CUTE (clean urban transport for Europe) project that has been in operation with FC since January 2004. Another part was developed in Guaratingueta, Brazil. Brazil intends to start up a program of FC buses. As conclusion, this paper shows the economical analysis comparing buses moved by fuel cells using hydrogen by different kinds of production. Electrolyze with wind turbine, natural gas steam reforming and ethanol steam reforming. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation