418 resultados para BILAYERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protease-resistant core domain of the neuronal SNARE complex consists of an α-helical bundle similar to the proposed fusogenic core of viral fusion proteins [Skehel, J. J. & Wiley, D. C. (1998) Cell 95, 871–874]. We find that the isolated core of a SNARE complex efficiently fuses artificial bilayers and does so faster than full length SNAREs. Unexpectedly, a dramatic increase in speed results from removal of the N-terminal domain of the t-SNARE syntaxin, which does not affect the rate of assembly of v-t SNARES. In the absence of this negative regulatory domain, the half-time for fusion of an entire population of lipid vesicles by isolated SNARE cores (≈10 min) is compatible with the kinetics of fusion in many cell types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BCL-2 family of proteins is composed of both pro- and antiapoptotic regulators, although its most critical biochemical functions remain uncertain. The structural similarity between the BCL-XL monomer and several ion-pore-forming bacterial toxins has prompted electrophysiologic studies. Both BAX and BCL-2 insert into KCl-loaded vesicles in a pH-dependent fashion and demonstrate macroscopic ion efflux. Release is maximum at ≈pH 4.0 for both proteins; however, BAX demonstrates a broader pH range of activity. Both purified proteins also insert into planar lipid bilayers at pH 4.0. Single-channel recordings revealed a minimal channel conductance for BAX of 22 pS that evolved to channel currents with at least three subconductance levels. The final, apparently stable BAX channel had a conductance of 0.731 nS at pH 4.0 that changed to 0.329 nS when shifted to pH 7.0 but remained mildly Cl− selective and predominantly open. When BAX-incorporated lipid vesicles were fused to planar lipid bilayers at pH 7.0, a Cl−-selective (PK/PCl = 0.3) 1.5-nS channel displaying mild inward rectification was noted. In contrast, BCL-2 formed mildly K+-selective (PK/PCl = 3.9) channels with a most prominent initial conductance of 80 pS that increased to 1.90 nS. Fusion of BCL-2-incorporated lipid vesicles into planar bilayers at pH 7.0 also revealed mild K+ selectivity (PK/PCl = 2.4) with a maximum conductance of 1.08 nS. BAX and BCL-2 each form channels in artificial membranes that have distinct characteristics including ion selectivity, conductance, voltage dependence, and rectification. Thus, one role of these molecules may include pore activity at selected membrane sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterotrimeric G proteins (peripheral proteins) conduct signals from membrane receptors (integral proteins) to regulatory proteins localized to various cellular compartments. They are in excess over any G protein-coupled receptor type on the cell membrane, which is necessary for signal amplification. These facts account for the large number of G protein molecules bound to membrane lipids. Thus, the protein-lipid interactions are crucial for their cellular localization, and consequently for signal transduction. In this work, the binding of G protein subunits to model membranes (liposomes), formed with defined membrane lipids, has been studied. It is shown that although G protein α-subunits were able to bind to lipid bilayers, the presence of nonlamellar-prone phospholipids (phosphatidylethanolamines) enhanced their binding to model membranes. This mechanism also appears to be used by other (structurally and functionally unrelated) peripheral proteins, such as protein kinase C and the insect protein apolipophorin III, indicating that it could constitute a general mode of protein-lipid interactions, relevant in the activity and translocation of some peripheral (amphitropic) proteins from soluble to particulate compartments. Other factors, such as the presence of cholesterol or the vesicle surface charge, also modulated the binding of the G protein subunits to lipid bilayers. Conversely, the binding of G protein-coupled receptor kinase 2 and the G protein β-subunit to liposomes was not increased by hexagonally prone lipids. Their distinct interactions with membrane lipids may, in part, explain the different cellular localizations of all of these proteins during the signaling process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The linear pentadecapeptide antibiotic, gramicidin D, is a naturally occurring product of Bacillus brevis known to form ion channels in synthetic and natural membranes. The x-ray crystal structures of the right-handed double-stranded double-helical dimers (DSDHℛ) reported here agree with 15N-NMR and CD data on the functional gramicidin D channel in lipid bilayers. These structures demonstrate single-file ion transfer through the channels. The results also indicate that previous crystal structure reports of a left-handed double-stranded double-helical dimer in complex with Cs+ and K+ salts may be in error and that our evidence points to the DSDHℛ as the major conformer responsible for ion transport in membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vpu is an 81-residue membrane protein encoded by the HIV-1 genome. NMR experiments show that the protein folds into two distinct domains, a transmembrane hydrophobic helix and a cytoplasmic domain with two in-plane amphipathic α-helices separated by a linker region. Resonances in one-dimensional solid-state NMR spectra of uniformly 15N labeled Vpu are clearly segregated into two bands at chemical shift frequencies associated with NH bonds in a transmembrane α-helix, perpendicular to the membrane surface, and with NH bonds in the cytoplasmic helices parallel to the membrane surface. Solid-state NMR spectra of truncated Vpu2–51 (residues 2–51), which contains the transmembrane α-helix and the first amphipathic helix of the cytoplasmic domain, and of a construct Vpu28–81 (residues 28–81), which contains only the cytoplasmic domain, support this structural model of Vpu in the membrane. Full-length Vpu (residues 2–81) forms discrete ion-conducting channels of heterogeneous conductance in lipid bilayers. The most frequent conductances were 22 ± 3 pS and 12 ± 3 pS in 0.5 M KCl and 29 ± 3 pS and 12 ± 3 pS in 0.5 M NaCl. In agreement with the structural model, truncated Vpu2–51, which has the transmembrane helix, forms discrete channels in lipid bilayers, whereas the cytoplasmic domain Vpu28–81, which lacks the transmembrane helix, does not. This finding shows that the channel activity is associated with the transmembrane helical domain. The pattern of channel activity is characteristic of the self-assembly of conductive oligomers in the membrane and is compatible with the structural and functional findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bcl-2 is the prototypical member of a large family of apoptosis-regulating proteins, consisting of blockers and promoters of cell death. The three-dimensional structure of a Bcl-2 homologue, Bcl-XL, suggests striking similarity to the pore-forming domains of diphtheria toxin and the bacterial colicins, prompting exploration of whether Bcl-2 is capable of forming pores in lipid membranes. Using chloride efflux from KCl-loaded unilamellar lipid vesicles as an assay, purified recombinant Bcl-2 protein exhibited pore-forming activity with properties similar to those of the bacterial toxins, diphtheria toxin, and colicins, i.e., dependence on low pH and acidic lipid membranes. In contrast, a mutant of Bcl-2 lacking the two core hydrophobic α-helices (helices 5 and 6), predicted to be required for membrane insertion and channel formation, produced only nonspecific effects. In planar lipid bilayers, where detection of single channels is possible, Bcl-2 formed discrete ion-conducting, cation-selective channels, whereas the Bcl-2 (Δh5, 6) mutant did not. The most frequent conductance observed (18 ± 2 pS in 0.5 M KCl at pH 7.4) is consistent with a four-helix bundle structure arising from Bcl-2 dimers. However, larger channel conductances (41 ± 2 pS and 90 ± 10 pS) also were detected with progressively lower occurrence, implying the step-wise formation of larger oligomers of Bcl-2 in membranes. These findings thus provide biophysical evidence that Bcl-2 forms channels in lipid membranes, suggesting a novel function for this antiapoptotic protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 Å, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the ε-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1,3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory’s approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi–Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equilibrium unilamellar vesicles are stabilized by one of two distinct mechanisms depending on the value of the bending constant. Helfrich undulations ensure that the interbilayer potential is always repulsive when the bending constant, K, is of order kBT. When K ≫ kBT, unilamellar vesicles are stabilized by the spontaneous curvature that picks out a particular vesicle radius; other radii are disfavored energetically. We present measurements of the bilayer elastic constant and the spontaneous curvature, Ro, for three different systems of equilibrium vesicles by an analysis of the vesicle size distribution determined by cryo-transmission electron microscopy and small-angle neutron scattering. For cetyltrimethylammonium bromide (CTAB)/sodium octyl sulfonate catanionic vesicles, K = .7 kBT, suggesting that the unilamellar vesicles are stabilized by Helfrich-undulation repulsions. However, for CTAB and sodium perfluorooctanoate (FC7) vesicles, K = 6 kBT, suggesting stabilization by the energetic costs of deviations from the spontaneous curvature. Adding electrolyte to the sodium perfluorooctanoate/CTAB vesicles leads to vesicles with two bilayers; the attractive interactions between the bilayers can overcome the cost of small deviations from the spontaneous curvature to form two-layer vesicles, but larger deviations to form three and more layer vesicles are prohibited. Vesicles with a discrete numbers of bilayers at equilibrium are possible only for bilayers with a large bending modulus coupled with a spontaneous curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light-induced lipophilic porphyrin/aqueous acceptor charge separation across a single lipid-water interface can pump protons across the lipid bilayer when the hydrophobic weak acids, carbonylcyanide m-chlorophenylhydrazone and its p-trifluoromethoxyphenyl analogue, are present. These compounds act as proton carriers across lipid bilayers. In their symmetric presence across the bilayer, the positive currents and voltages produced by the photogeneration of porphyrin cations are replaced by larger negative currents and voltages. The maximum negative current and voltage occur at the pH of maximum dark conductance. The reversed larger current and voltage show a positive ionic charge transport in the same direction as the electron transfer. This transport can form an ion concentration gradient. The movement of protons is verified by an unusual D2O isotope effect that increases the negative ionic current by 2- to 3-fold. These effects suggest that an interfacial pK shift of the weak acid caused by the local electric field of photoformed porphyrin cations/acceptor anions functions as the driving force. The estimated pumping efficiency is 10-30%. Time-resolved results show that proton pumping across the bilayer occurs on the millisecond time scale, similar to that of biological pumps. This light-driven proteinless pump offers a simple model for a prebiological energy transducer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.