965 resultados para BACTERIAL COUNT
Resumo:
Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.
Resumo:
Superantigens are bacterial, viral, or retroviral proteins which can activate specifically a large proportion of T cells. In contrast with classical peptide antigen recognition, superantigens do not require processing to small peptides but act as complete or partially processed proteins. They can bind to major histocompatibility complex class II molecules and stimulate T cells expressing particular T cell receptor V beta chains. The other polymorphic parts of the T cell receptor, which are crucial for classical antigen recognition, are not important for this interaction. When this strategy is used a large proportion of the host immune system can be activated shortly after infection. The activated cells have a wide variety of antigen specificities. The ability to stimulate polyclonal B (IgG) as well as T cell responses raises possibilities of a role for superantigens in the induction of autoimmune diseases. Superantigens have been a great tool in the hands of immunologists in unravelling some of the basic mechanisms of tolerance and immunity.
Resumo:
We prospectively compared the diagnostic value of C-reactive protein (CRP) and white blood cell counts for detection of neonatal septicaemia. Sensitivity and specifity in receiver operating characteristics, and positive and negative predictive value of CRP and white blood cell count were compared in 195 critically ill preterm and term newborns clinically suspected of infection. Blood cultures were positive in 33 cases. During the first 3 days after birth CRP elevation (sensitivity 75%, specifity 86%), leukopenia (67%/90%), neutropenia (78%/80%) and immature to total neutrophil count (I/T) ratio (78%/73%) were good diagnostic parameters, as opposed to band forms with absolute count (84%/66%) or percentage (79%/71%), thrombocytopenia (65%/57%) and toxic granulations (44%/94%). Beyond 3 days of age elevated CRP (88%/87%) was the best parameter. Increased total (84%/66%) or percentage band count (79%/71%) were also useful. Leukocytosis (74%/56%), increased neutrophils (67%/65%), I/T ratio (79%/47%), thrombocytopenia (65%/57%) and toxic granulations had a low specifity. The positive predictive value of CRP was 32% before and 37% after 3 days of age, that of leukopenia was 37% in the first 3 days. CONCLUSION: During the first 3 days of life CRP, leukopenia and neutropenia were comparably good tests while after 3 days of life CRP was the best single test in early detection of neonatal septicaemia. Serial CRP estimations confirm the diagnosis, monitor the course of infection and the efficacy of antibiotic treatment.
Resumo:
We described the colonization dynamics of Staphylococcus aureus in a group of 266 healthy carriers over a period of approximately 1 year. We used precise genotyping methods, i.e., amplified fragment length polymorphism (AFLP), spa typing, and double-locus sequence typing (DLST), to detect changes in strain identity. Strain change took place rather rarely: out of 89 carriers who had initially been colonized, only 7 acquired a strain different from the original one. Approximately one-third of the carriers eliminated the colonization, and a similar number became newly colonized. Some of these events probably represent detection failure rather than genuine colonization loss or acquisition. Lower bacterial counts were associated with increased probability of eliminating the colonization. We have confirmed a high mutation rate in the spa locus: 6 out of 53 strains underwent mutation in the spa locus. There was no overall change in S. aureus genotype composition.
Resumo:
Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.
Resumo:
BACKGROUND: Estimates of the decrease in CD4(+) cell counts in untreated patients with human immunodeficiency virus (HIV) infection are important for patient care and public health. We analyzed CD4(+) cell count decreases in the Cape Town AIDS Cohort and the Swiss HIV Cohort Study. METHODS: We used mixed-effects models and joint models that allowed for the correlation between CD4(+) cell count decreases and survival and stratified analyses by the initial cell count (50-199, 200-349, 350-499, and 500-750 cells/microL). Results are presented as the mean decrease in CD4(+) cell count with 95% confidence intervals (CIs) during the first year after the initial CD4(+) cell count. RESULTS: A total of 784 South African (629 nonwhite) and 2030 Swiss (218 nonwhite) patients with HIV infection contributed 13,388 CD4(+) cell counts. Decreases in CD4(+) cell count were steeper in white patients, patients with higher initial CD4(+) cell counts, and older patients. Decreases ranged from a mean of 38 cells/microL (95% CI, 24-54 cells/microL) in nonwhite patients from the Swiss HIV Cohort Study 15-39 years of age with an initial CD4(+) cell count of 200-349 cells/microL to a mean of 210 cells/microL (95% CI, 143-268 cells/microL) in white patients in the Cape Town AIDS Cohort > or =40 years of age with an initial CD4(+) cell count of 500-750 cells/microL. CONCLUSIONS: Among both patients from Switzerland and patients from South Africa, CD4(+) cell count decreases were greater in white patients with HIV infection than they were in nonwhite patients with HIV infection.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.
Resumo:
We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.
Resumo:
The imported swine court report monthly by the Department of Agricultural.
Resumo:
The imported swine court report monthly by the Department of Agricultural.
Resumo:
The imported swine court report monthly by the Department of Agricultural.
Resumo:
Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.