998 resultados para Atomic spectra
Resumo:
Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.
Resumo:
Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.
Resumo:
A detailed understanding of structure and stability of nanowires is critical for applications. Atomic resolution imaging of ultrathin single crystalline Au nanowires using aberration-corrected microscopy reveals an intriguing relaxation whereby the atoms in the close-packed atomic planes normal to the growth direction are displaced in the axial direction leading to wrinkling of the (111) atomic plane normal to the wire axis. First-principles calculations of the structure of such nanowires confirm this wrinkling phenomenon, whereby the close-packed planes relax to form saddle-like surfaces. Molecular dynamics studies of wires with varying diameters and different bounding surfaces point to the key role of surface stress on the relaxation process. Using continuum mechanics arguments, we show that the wrinkling arises due to anisotropy in the surface stresses and in the elastic response, along with the divergence of surface-induced bulk stress near the edges of a faceted structure. The observations provide new understanding on the equilibrium structure of nanoscale systems and could have important implications for applications in sensing and actuation.
Resumo:
Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initio calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and ``Atoms in Molecules'' analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O-H center dot center dot center dot O, O-H center dot center dot center dot pi, and C-H center dot center dot center dot pi. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact. (C) 2014 AIP Publishing LLC.
Resumo:
The use of Projection Reconstruction (PR) to obtain two-dimensional (2D) spectra from one-dimensional (1D) data in the solid state is illustrated. The method exploits multiple 1D spectra obtained using magic angle spinning and off-magic angle spinning. The spectra recorded under the influence of scaled heteronuclear scalar and dipolar couplings in the presence of homonuclear dipolar decoupling sequences have been used to reconstruct J/D Resolved 2D-NMR spectra. The use of just two 1D spectra is observed sufficient to reconstruct a J-resolved 2D-spectrum while a Separated Local Field (SLF) 2D-NMR spectrum could be obtained from three 1D spectra. The experimental techniques for recording the 10 spectra and procedure of reconstruction are discussed and the reconstructed results are compared with 20 experiments recorded in traditional methods. The application of the technique has been made to a solid polycrystalline sample and to a uniaxially oriented liquid crystal. Implementation of PR-NMR in solid state provides high-resolution spectra as well as leads to significant reduction in experimental time. The experiments are relatively simple and are devoid of several technical complications involved in performing the 2D experiments.
Resumo:
Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We use the Ramsey separated oscillatory fields technique in a 400 degrees C thermal beam of ytterbium (Yb) atoms to measure the Larmor precession frequency (and hence the magnetic field) with high precision. For the experiment, we use the strongly allowed S-1(0) P-1(1) transition at 399 nm, and choose the odd isotope Yb-171 with nuclear spin I = 1/2, so that the ground state has only two magnetic sublevels m(F) = +/- 1/2. With a magnetic field of 22.2 G and a separation of about 400 mm between the oscillatory fields, the central Ramsey fringe is at 16.64 kHz and has a width of 350 Hz. The technique can be readily adapted to a cold atomic beam, which is expected to give more than an order-of-magnitude improvement in precision. The signal-to-noise ratio is comparable to other techniques of magnetometry; therefore it should be useful for all kinds of precision measurements such as searching for a permanent electric dipole moment in atoms.
Resumo:
Multifrequency atomic force microscopy is a powerful nanoscale imaging and characterization technique that involves excitation of the atomic force microscope (AFM) probe and measurement of its response at multiple frequencies. This paper reports the design, fabrication, and evaluation of AFM probes with a specified set of torsional eigen-frequencies that facilitate enhancement of sensitivity in multifrequency AFM. A general approach is proposed to design the probes, which includes the design of their generic geometry, adoption of a simple lumped-parameter model, guidelines for determination of the initial dimensions, and an iterative scheme to obtain a probe with the specified eigen-frequencies. The proposed approach is employed to design a harmonic probe wherein the second and the third eigen-frequencies are the corresponding harmonics of the first eigen-frequency. The probe is subsequently fabricated and evaluated. The experimentally evaluated eigen-frequencies and associated mode shapes are shown to closely match the theoretical results. Finally, a simulation study is performed to demonstrate significant improvements in sensitivity to the second-and the third-harmonic spectral components of the tip-sample interaction force with the harmonic probe compared to that of a conventional probe.
Resumo:
The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
NMR-based approach to metabolomics typically involves the collection of two-dimensional (2D) heteronuclear correlation spectra for identification and assignment of metabolites. In case of spectral overlap, a 3D spectrum becomes necessary, which is hampered by slow data acquisition for achieving sufficient resolution. We describe here a method to simultaneously acquire three spectra (one 3D and two 2D) in a single data set, which is based on a combination of different fast data acquisition techniques such as G-matrix Fourier transform (GFT) NMR spectroscopy, parallel data acquisition and non-uniform sampling. The following spectra are acquired simultaneously: (1) C-13 multiplicity edited GFT (3,2)D HSQC-TOCSY, (2) 2D H-1- H-1] TOCSY and (3) 2D C-13- H-1] HETCOR. The spectra are obtained at high resolution and provide high-dimensional spectral information for resolving ambiguities. While the GFT spectrum has been shown previously to provide good resolution, the editing of spin systems based on their CH multiplicities further resolves the ambiguities for resonance assignments. The experiment is demonstrated on a mixture of 21 metabolites commonly observed in metabolomics. The spectra were acquired at natural abundance of C-13. This is the first application of a combination of three fast NMR methods for small molecules and opens up new avenues for high-throughput approaches for NMR-based metabolomics.
Resumo:
Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.
Resumo:
Detailed investigation of the chemical states and local atomic environment of Ni and Zn in the two-phase composites of Zn1-xNixO/NiO was reported. The X-ray photoelectron spectra of both Ni-2p and Zn-2p revealed the existence of a doublet with spin-orbit splitting approximate to 17.9 and 23.2eV, respectively confirming the divalent oxidation state of both Ni and Zn. However, the samples fabricated under oxygen-rich conditions exhibit significant difference in the binding energy approximate to 18.75eV between the 2p3/2 and 2p1/2 states of Ni. The shift in the satellite peaks of Ni-2p with increasing the Ni composition x within the Zn1-xNixO/NiO matrix signifies the attenuation of nonlocal screening because of reduced site occupancy of two adjacent Zn ions. The temperature dependence of X-ray diffraction analysis reveals a large distortion in the axial-rhombohedral angle for oxygen-rich NiO. Conversely, no significant distortion was noticed in the NiO system present as a secondary phase within Zn1-xNixO. Nevertheless, the unit-cell volume of both wurtzite h.c.p. Zn1-xNixO and f.c.c. NiO exhibits an anomalous behavior between 150 and 300 degrees C. The origin of such unusual change in the unit-cell volume was discussed in terms of oxygen stoichiometry.
Resumo:
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2 `' Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
Resumo:
Plasma-assisted molecular beam epitaxy growth of (10-10) m-InN/(10-10) m-GaN was carried out on bare (10-10) m-sapphire substrate. The high resolution X-ray diffraction studies confirmed the orientation of the as-grown films. Nonpolar InN layer was grown at different growth temperatures ranging from 390 degrees C to 440 degrees C and the FWHM of rocking curve revealed good quality film at low temperatures. An in-plane relationship was established for the hetrostructures using phi-scan and a perfect alignment was found for the epilayers. Change of morphology of the films grown at different temperatures was observed using an atomic force microscopy technique showing the smoothest film grown at 400 degrees C. InN optical band gap was found to be vary from 0.79-0.83 eV from absorption spectra. The blue-shift of absorption edge was found to be induced by excess background electron concentration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Most often the measurement of VHF from the conventional 1D H-1 NMR spectrum is severely hindered consequent to similar magnitudes of JHF and JHH couplings and the spectral multiplicity pattern. The present study reports a new 1D NMR technique based on real time spin edition, which removes all JHF and JHH while retaining only VHF of a chosen fluorine. The obtained spectrum is significantly simplified and permits straightforward determination of all possible VHF values of a chosen fluorine. Due to one dimensional nature, the method is much faster compared to 2D GET-SERF by 1-2 orders of magnitude. (C) 2015 Elsevier B.V. All rights reserved.