970 resultados para Astronomical mission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We construct a theoretical model to predict the number of orphan afterglows (OA) from gamma-ray bursts (GRBs) triggered by primordial metal-free (Pop III) stars expected to be observed by the Gaia mission. In particular, we consider primordial metal-free stars that were affected by radiation from other stars (Pop III. 2) as a possible target. Methods. We use a semi-analytical approach that includes all relevant feedback effects to construct cosmic star formation history and its connection with the cumulative number of GRBs. The OA events are generated using the Monte Carlo method, and realistic simulations of Gaia's scanning law are performed to derive the observation probability expectation. Results. We show that Gaia can observe up to 2.28 +/- 0.88 off-axis afterglows and 2.78 +/- 1.41 on-axis during the five-year nominal mission. This implies that a nonnegligible percentage of afterglows that may be observed by Gaia (similar to 10%) could have Pop III stars as progenitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 ( LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 +/- 0.33 Jupiter masses and 1.30 +/- 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 +/- 0.0011 AU and an orbital period of 2.72474 +/- 0.00014 days. The planetary bulk density is ( 1.36 +/- 0.48) x 10(3) kg m(-3), very similar to the bulk density of Jupiter, and follows an M-1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 +/- 0.09 solar masses and 1.95 +/- 0.2 solar radii. The star and the planet exchange extreme tidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q(*)/k2(*) <= 107.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Se presentan algunos datos y resultados de la misión Challenger 1, expedición de un minisubmarino denominado Silbo que salió de Islandia el 23 de junio y llegó a Gran Canaria procedente de Azores en mayo de 2012. Esta misión es un proyecto para circunvalar todos los oceanos de la tierra mediante este vehículo submarino de 2 metros y aproximadamente 50 kilos de peso que sólo consumió medio litro de gasolina en este transecto y mediante el cual se obtienen datos del océano sobre salinidad, tempertauras, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of astronomical sites is the first step to be considered to have the best performances from the telescopes. In particular, the efficiency of large telescopes in UV, IR, radio etc. is critically dependent on atmospheric transparency. It is well known that the random optical effects induced on the light propagation by turbulent atmosphere also limit telescope’s performances. Nowadays, clear appears the importance to correlate the main atmospheric physical parameters with the optical quality reachable by large aperture telescopes. The sky quality evaluation improved with the introduction of new techniques, new instrumentations and with the understanding of the link between the meteorological (or synoptical parameters and the observational conditions thanks to the application of the theories of electromagnetic waves propagation in turbulent medias: what we actually call astroclimatology. At the present the site campaigns are evolved and are performed using the classical scheme of optical seeing properties, meteorological parameters, sky transparency, sky darkness and cloudiness. New concept are added and are related to the geophysical properties such as seismicity, microseismicity, local variability of the climate, atmospheric conditions related to the ground optical turbulence and ground wind regimes, aerosol presence, use of satellite data. The purpose of this project is to provide reliable methods to analyze the atmospheric properties that affect ground-based optical astronomical observations and to correlate them with the main atmospheric parameters generating turbulence and affecting the photometric accuracy. The first part of the research concerns the analysis and interpretation of longand short-time scale meteorological data at two of the most important astronomical sites located in very different environments: the Paranal Observatory in the Atacama Desert (Chile), and the Observatorio del Roque de Los Muchachos(ORM) located in La Palma (Canary Islands, Spain). The optical properties of airborne dust at ORM have been investigated collecting outdoor data using a ground-based dust monitor. Because of its dryness, Paranal is a suitable observatory for near-IR observations, thus the extinction properties in the spectral range 1.00-2.30 um have been investigated using an empirical method. Furthermore, this PhD research has been developed using several turbulence profilers in the selection of the site for the European Extremely Large Telescope(E-ELT). During the campaigns the properties of the turbulence at different heights at Paranal and in the sites located in northern Chile and Argentina have been studied. This given the possibility to characterize the surface layer turbulence at Paranal and its connection with local meteorological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EUMETSAT (www.eumetsat.int) e’ l’agenzia europea per operazioni su satelliti per monitorare clima, meteo e ambiente terrestre. Dal centro operativo situato a Darmstadt (Germania), si controllano satelliti meteorologici su orbite geostazionarie e polari che raccolgono dati per l’osservazione dell’atmosfera, degli oceani e della superficie terrestre per un servizio continuo di 24/7. Un sistema di monitoraggio centralizzato per programmi diversi all’interno dell’ambiente operazionale di EUMETSAT, e’ dato da GEMS (Generic Event Monitoring System). Il software garantisce il controllo di diverse piattaforme, cross-monitoring di diverse sezioni operative, ed ha le caratteristiche per potere essere esteso a future missioni. L’attuale versione della GEMS MMI (Multi Media Interface), v. 3.6, utilizza standard Java Server Pages (JSP) e fa uso pesante di codici Java; utilizza inoltre files ASCII per filtri e display dei dati. Conseguenza diretta e’ ad esempio, il fatto che le informazioni non sono automaticamente aggiornate, ma hanno bisogno di ricaricare la pagina. Ulteriori inputs per una nuova versione della GEMS MMI vengono da diversi comportamenti anomali riportati durante l’uso quotidiano del software. La tesi si concentra sulla definizione di nuovi requisiti per una nuova versione della GEMS MMI (v. 4.4) da parte della divisione ingegneristica e di manutenzione di operazioni di EUMETSAT. Per le attivita’ di supporto, i test sono stati condotti presso Solenix. Il nuovo software permettera’ una migliore applicazione web, con tempi di risposta piu’ rapidi, aggiornamento delle informazioni automatico, utilizzo totale del database di GEMS e le capacita’ di filtri, insieme ad applicazioni per telefoni cellulari per il supporto delle attivita’ di reperibilita’. La nuova versione di GEMS avra’ una nuova Graphical User Interface (GUI) che utilizza tecnologie moderne. Per un ambiente di operazioni come e’ quello di EUMETSAT, dove l’affidabilita’ delle tecnologie e la longevita’ dell’approccio scelto sono di vitale importanza, non tutti gli attuali strumenti a disposizione sono adatti e hanno bisogno di essere migliorati. Allo stesso tempo, un’ interfaccia moderna, in termini di visual design, interattivita’ e funzionalita’, e’ importante per la nuova GEMS MMI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was carried out inside the ESA's ESEO mission and focus in the design of one of the secondary payloads carried on board the spacecraft: a GNSS receiver for orbit determination. The purpose of this project is to test the technology of the orbit determination in real time applications by using commercial components. The architecture of the receiver includes a custom part, the navigation computer, and a commercial part, the front-end, from Novatel, with COCOM limitation removed, and a GNSS antenna. This choice is motivated by the goal of demonstrating the correct operations in orbit, enabling a widespread use of this technology while lowering the cost and time of the device’s assembly. The commercial front-end performs GNSS signal acquisition, tracking and data demodulation and provides raw GNSS data to the custom computer. This computer processes this raw observables, that will be both transferred to the On-Board Computer and then transmitted to Earth and provided as input to the recursive estimation filter on-board, in order to obtain an accurate positioning of the spacecraft, using the dynamic model. The main purpose of this thesis, is the detailed design and development of the mentioned GNSS receiver up to the ESEO project Critical Design Review, including requirements definition, hardware design and breadboard preliminary test phase design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.