967 resultados para Artisanal fisheries monitoring
Resumo:
The squid Loligo plei concentrates in the southeastern Brazil Bight, where it has traditionally supported small-scale fisheries around Sao Sebastiao Island (SSI). Sea surface temperature (SST), chlorophyll-a (Chl a), windspeed, wave height, rainfall, and lunar phase are related to fishing records and to the results of a survey of local fishers to investigate how they believe environmental variables might affect catches of L. plei. Daily fishery-dependent data over the years 2005-2009 were obtained from a fishing cooperative and were matched with satellite and meteorological forecast data. Generalized linear models were used to explore the significance of environmental variables in relation to variability in catch and catch per unit effort (cpue). Squid are fished with jigs in water shallower than 20 m, generally where SST is warmer and Chl a and windspeed are lower. Cpue and monthly catches decreased from 2005 to 2008, followed by a slight increase in 2009. The correlations between fishery and environmental data relate well to fishers` oceanological knowledge, underscoring the potential of incorporating such knowledge into evaluations of the fishery.
Resumo:
Accurate assessments of fish populations are often limited by re-observation or recapture events. Since the early 1990s, passive integrated transponders (PIT tags) have been used to understand the biology of many fish species. Until recently, PIT applications in small streams have been limited to physical recapture events. To maximize recapture probability, we constructed PIT antenna arrays in small streams to remotely detect individual fish. Experiences from two different laboratories (three case studies) allowed us to develop a unified approach to applying PIT technology for enhancing data assessments. Information on equipment, its installation, tag considerations, and array construction is provided. Theoretical and practical definitions are introduced to standardize metrics for assessing detection efficiency. We demonstrate how certain conditions (stream discharge, vibration, and ambient radio frequency noise) affect the detection efficiency and suggest that by monitoring these conditions, expectations of efficiency can be modified. We emphasize the importance of consistently estimating detection efficiency for fisheries applications.