887 resultados para Amorphous selenium
Resumo:
Thesis (Ph. D.)--University of Iowa, 1916.
Resumo:
Mode of access: Internet.
Resumo:
Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys were produced by a copper mould casting method. The alloys have high glass-forming ability and good thermal stability. The maximum diameter of glass formation (D-c), glass transition temperature (T-g), crystallization onset temperature (T-x), temperature interval of the supercooled region (Delta T-x), melting temperature (T-m), liquidus temperature (T-1) as well as heats of crystallization (Delta H-x) and melting (Delta H-m) are reported for these alloys. Both alloys exhibit high hardness and high strength at room temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Many food materials exist in a disordered amorphous solid state due to processing. Therefore, understanding the concept of amorphous state, its important phase transition (i.e., glass transition), and the related phenomena (e.g., enthalpy relaxation) is important to food scientists. Food saccharides, including mono-, di-, oligo-, and polysaccharides, are among the most important major components in food. Focusing on the food saccharides, this review covers important topics related to amorphous solids, including the concept and molecular arrangement of amorphous solid, the formation of amorphous food saccharides, the concept of glass transition and enthalpy relaxation, physical property changes and molecular mobility around the glass transition, measurement of the glass transition and enthalpy relaxation, their mathematical descriptions and models, and influences on food stability.
Resumo:
Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.
Resumo:
2-(2-pyridyl)phenyl(p-ethoxyphenyl)tellurium(II), (RR1Te) reacts with HgC12 at room temperature to give white HgCl2.RR1Te. On setting aside, or on warming the reaction mixture a yellow material, [R1HgCl.(RTeCl)2] is formed. Multinuclear NMR(125Te, 199Hg, 1H) and mass spectroscopy confirm the formulation, and confirm the ease of transfer of the p-ethoxyphenyl group (R1) between the metal centres. The crystal structure of the yellow material consists of two discrete RTeCl molecules together with a R1HgCl molecule. There is no dative bond formation between these species, hence the preferred description of the formation of an inclusion complex. The reaction of RR1Te with Copper(I) chloride in the cold gives an air sensitive yellow product Cu3Cl3(RR1Te)2(0.5CH3CN); under reflux in air changes to the green Cu2Cl(RR1Te)(0.5 EtOH). By contrast, the reaction of RR1Te with acetonitrile solution of Copper(II) salts under mild conditions affords the white materials CuCl(RR1Te) and CuBr(RR1Te)H2O. RR1Te reacts with PdCl2 and PtCl2 to give materials albeit not well defined, can be seen as intermediates to the synthesis of inorganic phase of the type M3XTe2XCl2X. Paramagnetism is associated with some of the palladium and platinum products. The 195Pt NMR measurement in DMSO establishes the presence of six platinum species, which are assigned to Pt(IV), Pt(III) or Pt(II). The reactions show that in the presence of PdCl2 or PtCl2 both R and R1 are very labile. The reaction of RHgCl(R= 2-(2-pyridyl)phenyl) with SeX4(X= Cl, Br) gives compounds which suggest that both Trans-metallation and redox processes are involved. By varying reaction conditions materials which appear to be intermediates in the trans-metallation process are isolated. Potentially bidentate tellurium ligands having molecular formula RTe(CH2)nTeR,Ln, (R= Ph,(t-Bu). C6H4, n = 5,10) are prepared. Palladium and Platinum complexes containing these ligands are prepared. Also complex Ph3SnC1L(L = p-EtO.C6H4) is prepared.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.
Resumo:
The work presented in this thesis describes an investigation into the production and properties of thin amorphous C films, with and without Cr doping, as a low wear / friction coating applicable to MEMS and other micro- and nano-engineering applications. Firstly, an assessment was made of the available testing techniques. Secondly, the optimised test methods were applied to a series of sputtered films of thickness 10 - 2000 nm in order to: (i) investigate the effect of thickness on the properties of coatingslcoating process (ii) investigate fundamental tribology at the nano-scale and (iii) provide a starting point for nanotribological coating optimisation at ultra low thickness. The use of XPS was investigated for the determination of Sp3/Sp2 carbon bonding. Under C 1s peak analysis, significant errors were identified and this was attributed to the absence of sufficient instrument resolution to guide the component peak structure (even with a high resolution instrument). A simple peak width analysis and correlation work with C KLL D value confirmed the errors. The use of XPS for Sp3/Sp2 was therefore limited to initial tentative estimations. Nanoindentation was shown to provide consistent hardness and reduced modulus results with depth (to < 7nm) when replicate data was suitably statistically processed. No significant pile-up or cracking of the films was identified under nanoindentation. Nanowear experimentation by multiple nanoscratching provided some useful information, however the conditions of test were very different to those expect for MEMS and micro- / nano-engineering systems. A novel 'sample oscillated nanoindentation' system was developed for testing nanowear under more relevant conditions. The films were produced in an industrial production coating line. In order to maximise the available information and to take account of uncontrolled process variation a statistical design of experiment procedure was used to investigate the effect of four key process control parameters. Cr doping was the most significant control parameter at all thicknesses tested and produced a softening effect and thus increased nanowear. Substrate bias voltage was also a significant parameter and produced hardening and a wear reducing effect at all thicknesses tested. The use of a Cr adhesion layer produced beneficial results at 150 nm thickness, but was ineffective at 50 nm. Argon flow to the coating chamber produced a complex effect. All effects reduced significantly with reducing film thickness. Classic fretting wear was produced at low amplitude under nanowear testing. Reciprocating sliding was produced at higher amplitude which generated three body abrasive wear and this was generally consistent with the Archard model. Specific wear rates were very low (typically 10-16 - 10-18 m3N-1m-1). Wear rates reduced exponentially with reduced film thickness and below (approx.) 20 nm, thickness was identified as the most important control of wear.