949 resultados para Alveolar reconstruction
Resumo:
Various methods are available for preservation of vascular grafts for pulmonary artery (PA) replacement. Lyophilization and cryopreservation reduce antigenicity and prevent thrombosis and calcification in vascular grafts, so both methods can be used to obtain vascular bioprostheses. We evaluated the hemodynamic, gasometric, imaging, and macroscopic and microscopic findings produced by PA reconstruction with lyophilized (LyoPA) grafts and cryopreserved (CryoPA) grafts in dogs. Eighteen healthy crossbred adult dogs of both sexes weighing between 18 and 20 kg were used and divided into three groups of six: group I, PA section and reanastomosis; group II, PA resection and reconstruction with LyoPA allograft; group III, PA resection and reconstruction with CryoPA allograft. Dogs were evaluated 4 weeks after surgery, and the status of the graft and vascular anastomosis were examined macroscopically and microscopically. No clinical, radiologic, or blood-gas abnormalities were observed during the study. The mean pulmonary artery pressure (MPAP) in group III increased significantly at the end of the study compared with baseline (P=0.02) and final [P=0.007, two-way repeat-measures analysis of variance (RM ANOVA)] values. Pulmonary vascular resistance of groups II and III increased immediately after reperfusion and also at the end of the study compared to baseline. The increase shown by group III vs group I was significant only if compared with after surgery and study end (P=0.016 and P=0.005, respectively, two-way RM ANOVA). Microscopically, permeability was reduced by ≤75% in group III. In conclusion, substitution of PAs with LyoPA grafts is technically feasible and clinically promising.
Resumo:
A cranial bone defect may result after an operative treatment of trauma, infection, vascular insult, or tumor. New biomaterials for cranial bone defect reconstructions are needed for example to mimic the biomechanical properties and structure of cranial bone. A novel glass fiber-reinforced composite implant with bioactive glass particulates (FRC–BG, fiber-reinforced composite–bioactive glass) has osteointegrative potential in a preclinical setting. The aim of the first and second study was to investigate the functionality of a FRC–BG implant in the reconstruction of cranial bone defects. During the years 2007–2014, a prospective clinical trial was conducted in two tertiary level academic institutions (Turku University Hospital and Oulu University Hospital) to evaluate the treatment outcome in 35 patients that underwent a FRC–BG cranioplasty. The treatment outcome was good both in adult and pediatric patients. A number of conventional complications related to cranioplasty were observed. In the third study, a retrospective outcome evaluation of 100 cranioplasty procedures performed in Turku University Hospital between years 2002–2012 was conducted. The experimental fourth study was conducted to test the load-bearing capacity and fracture behavior of FRC–BG implants under static loading. The interconnective bars in the implant structure markedly increased the load-bearing capacity of the implant. A loading test did not demonstrate any protrusions of glass fibers or fiber cut. The fracture type was buckling and delamination. In this study, a postoperative complication requiring a reoperation or removal of the cranioplasty material was observed in one out of five cranioplasty patients. The treatment outcomes of cranioplasty performed with different synthetic materials did not show significant difference when compared with autograft. The FRC–BG implant was demonstrated to be safe and biocompatible biomaterial for large cranial bone defect reconstructions in adult and pediatric patients.
Resumo:
While red-green-blue (RGB) image of retina has quite limited information, retinal multispectral images provide both spatial and spectral information which could enhance the capability of exploring the eye-related problems in their early stages. In this thesis, two learning-based algorithms for reconstructing of spectral retinal images from the RGB images are developed by a two-step manner. First, related previous techniques are reviewed and studied. Then, the most suitable methods are enhanced and combined to have new algorithms for the reconstruction of spectral retinal images. The proposed approaches are based on radial basis function network to learn a mapping from tristimulus colour space to multi-spectral space. The resemblance level of reproduced spectral images and original images is estimated using spectral distance metrics spectral angle mapper, spectral correlation mapper, and spectral information divergence, which show a promising result from the suggested algorithms.
Resumo:
[Code]
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 P65 D53 2007
Resumo:
Christian Cardell Corbet, a descendant of Guernsey, Channel Islands, was born in 1966 at Pickering Beach on Lake Ontario. He developed his talents as a landscape artist and at the young age of 14 he began his informal education in commercial signage from his paternal grandfather. He studied at the University of Guelph and McMaster University Anatomy Laboratory. Corbet traveled to England where he began to experiment more in abstraction and non-objective work. In 1995, he presented a portrait of HM Queen Elizabeth the Queen Mother at Clarence House. This brought his career to an international level. He also creates two-dimensional works and has received acclaim for his bronze art medallions. He has gained international recognition as a Forensic Artist working as Artist in Residence for the University of Western Ontario. He does facial reconstructions for special assignments. These original drawings relate to a sculpted medallion of Brock which was authorized by Sir Geoffrey Rowland, Bailiff, Guernsey, Channel Islands and Minister of Education of the States of Guernsey. This is the first time in known recorded history that a forensic analysis and sculpture has been created to accurately depict the facial likeness of Sir Isaac Brock. This project has been established to mark the 2012 anniversary of the death of Brock.
Resumo:
The ovariectomized (OVX) rat, a preclinical model for studying postmenopausal bone loss, may also be used to study differences in alveolar bone (AB). The objectives of this study were to quantify the differences in AB following estrogen replacement therapy (ERT), and to investigate the relationship between AB structure and density, and trabecular bone at the femoral neck (FN) and third lumbar vertebral body (LB3). Estrogen treated rats had a higher bone volume fraction (BV/TV) at the AB region (9.8% P < 0.0001), FN (12% P < 0.0001), and LB3 (11.5% P < 0.0001) compared to the OVX group. BV/TV of the AB was positively correlated with the BV/TV at the FN (r = 0.69 P < 0.0001) and the LB3 (r = 0.75 P < 0.0001). The trabecular number (Tb.N), trabecular separation (Tb.Sp), and structure model index (SMI) were also positively correlated (P < 0.05) between the AB and FN (r = 0.42, 0.49, and 0.73, respectfully) and between the AB and LB3 (r = 0.44, 0.63, and 0.69, respectfully). Given the capacity of AB to respond to ERT, future preclinical drug/nutritional intervention studies aimed at improving skeletal health should include the AB as a region of interest (ROI).
Resumo:
Tesis (Maestría en Ciencias Odontológicas con Especialidad en Periodoncia) UANL
Resumo:
UANL
Resumo:
Rapport de recherche