996 resultados para Alpha G(i2)
Resumo:
Recurrent prostate cancer presents a challenge to conventional treatment, particularly so to address micrometastatic and small-volume disease. Use of α-radionuclide therapy is considered as a highly effective treatment in such applications due to the shorter range and exquisite cytotoxicity of α-particles as compared with β-particles. (213)Bi is considered an α-emitter with high clinical potential, due to its short half-life (45.6 minutes) being well matched for use in peptide-receptor radionuclide α-therapy; however, there is limited knowledge available within this context of use. In this study, two novel (213)Bi-labeled peptides, DOTA-PEG(4)-bombesin (DOTA-PESIN) and DO3A-CH(2)CO-8-aminooctanoyl-Q-W-A-V-G-H-L-M-NH(2) (AMBA), were compared with (177)Lu (β-emitter)-labeled DOTA-PESIN in a human androgen-independent prostate carcinoma xenograft model (PC-3 tumor). Animals were injected with (177)Lu-DOTA-PESIN, (213)Bi-DOTA-PESIN, or (213)Bi-AMBA to determine the maximum tolerated dose (MTD), biodistribution, and dosimetry of each agent; controls were left untreated or were given nonradioactive (175)Lu-DOTA-PESIN. The MTD of (213)Bi-DOTA-PESIN and (213)Bi-AMBA was 25 MBq (0.68 mCi) whereas (177)Lu-DOTA-PESIN showed an MTD of 112 MBq (3 mCi). At these dose levels, (213)Bi-DOTA-PESIN and (213)Bi-AMBA were significantly more effective than (177)Lu-DOTA-PESIN. At the same time, (177)Lu-DOTA-PESIN showed minimal, (213)Bi-DOTA-PESIN slight, and (213)Bi-AMBA marked kidney damage 20 to 30 weeks posttreatment. These preclinical data indicate that α-therapy with (213)Bi-DOTA-PESIN or (213)Bi-AMBA is more efficacious than β-therapy. Furthermore, (213)Bi-DOTA-PESIN has a better safety profile than (213)Bi-AMBA, and represents a possible new approach for use in peptide-receptor radionuclide α-therapy treating recurrent prostate cancer.
Resumo:
The effect of induction of parturition with a PGF(2)alpha analog on plasma concentration of prolactin (PRL) and its effects on colostrum concentration of IgG and chitotriosidase (ChT) activity were studied in 16 pregnant Majorera goats. Treated goats, those in which parturition was induced, had greater concentrations of PRL than control goats 24 h before parturition (P < 0.05) and 48 h after parturition (P < 0.05). Control goats had greater concentrations of PRL than treated goats 96 h after parturition (P < 0.05). Plasma concentration of IgG did not differ between groups during the experimental period, but colostrum concentrations of IgG were greater in control goats than in treated goats at parturition (P < 0.05). Plasma ChT activity decreased during the period 72 h before parturition to 24 h after parturition in control and treated goats. Time evolution after partum affected the colostrum ChT activity, being greater at parturition than after parturition in both groups (P < 0.05). In summary, concentration of IgG in colostrum is slightly diminished if parturition is induced. Induction of parturition causes an early increase in PRL, which is most likely responsible for preterm suppression of IgG transport into mammary secretions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this thesis was to synthesize biodegradable polyesters from a wide array of functionalized ¿-hydroxy acids. The initial strategy was to use amido-functionalized ¿-hydroxy acids and 2-bromopropanoyl bromide to form amido-functionalized cyclic diesters. Then, the resulting cyclic diesters would be used in ring opening polymerization to create biodegradable polyesters. However, the spontaneous rapid degradation of the secondary amido-functionalized cyclic diester structure, as seen with 2-benzamido-hydroxyacetic acid, limited ring formation to tertiary amido-functionalized ¿-hydroxy acids. Also, the hydrophilic nature of most ¿-hydroxy acids allowed water into the crystal structure of the ¿-hydroxy acid. Then, when the ¿-hydroxy acid was used in ring forming reactions, the associated water deactivated reactive reagents and limited cyclic diester synthesis. These issues led to the synthesis of hydrophobic and tertiary amido- and imido-functionalized ¿-hydroxy acids, 2-phthalimido-2-hydroxyacetic acid and 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid. The new ¿-hydroxy acids were used in two new polymerization techniques, melt polycondensation and solution polymerization, instead of ring open polymerization. Melt polycondensation and solution polymerization had shown previous success in forming oligomers of amido-functionalized ¿-hydroxy acids. Melt polycondensation was conducted by heating the monomer past its melting temperature under reduced pressure. The uncatalyzed melt polycondensation of 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid created polyesters (¿ 960 g/mol). The scandium(III) trifluoromethanesulfonate enhanced melt polycondensation polymerization created slightly larger oligomers (¿ 1340 g/mol). However, 2-phthalimido-2-hydroxyacetic acid was not compatible with melt polycondensation because thermal degradation occurred. Thus, solution polymerization was conducted via Steglich esterification. Only oligomeric functionalized polyesters were formed (¿ 1060 g/mol). Future work should focus on optimization of the catalyst and the reaction conditions to obtain higher molecular weight polyesters. Also, 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid should be utilized in the cyclic diester synthesis technique.
Resumo:
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.
Resumo:
OBJECTIVE: To examine whether the G-to-A polymorphism at position -308 in the promoter of the tumour necrosis factor-alpha (TNFalpha) gene influences the therapeutic response to TNFalpha-blockers in patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA) and ankylosing spondylitis (AS). METHODS: A total of 54 patients with RA, 10 with PsA and 22 with AS were genotyped by polymerase chain reaction for the -308 TNFalpha promoter polymorphism. They were treated with infliximab (n = 63), adalimumab (n = 10) or etanercept (n = 13). Clinical response was assessed after 24 weeks by the Disease Activity Score in 28 joints (DAS28) for RA and PsA, and the Bath Ankylosing Spondylitis Activity Index (BASDAI) for AS patients. RESULTS: All patients with the A/A genotype (n = 3, all RA) and two patients with the A/G genotype (AS) failed to respond to anti-TNF treatment. Irrespective of the underlying disease, moderate response (n = 44) was predominantly associated with the A/G genotype (A/G 18/22, G/G 4/22), whereas good response (n = 59) was exclusively seen in patients with the G/G genotype. The average improvement in the DAS28 score was 0.83 in the A/A, 1.50 in the A/G and 2.64 in the G/G group of RA and PsA patients (P < 0.0001). The BASDAI score in AS improved on average by 1.21 in the A/G and by 3.30 in the G/G group (P < 0.005). CONCLUSIONS: The data suggest that humans with a TNFalpha -308 G/G genotype are better responders to anti-TNFalpha treatment than those with A/A or A/G genotypes independent of the treated rheumatic disease (RA, PsA or AS).
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
Dysfunctions of the hippocampus have been suggested to be related to schizophrenia, and reduced connectivity with other brain regions may be a key for the pathophysiology. The aim of this study was to investigate the effect of white matter anomalies in the hippocampus, as a sign of altered connectivity, on the brain electrical activity. We investigated seven first episode schizophrenic patients and seven age, gender and education-matched controls with diffusion tensor imaging and resting EEG. Fractional anisotropy was computed based on diffusion tensor imaging data for the right and left hippocampus for both groups. No group differences were found in hippocampal fractional anisotropy, EEG spectral power and topography. However a significant correlation was found between more anterior alpha activity and lower fractional anisotropy of both hippocampi in schizophrenics, but not in controls. More anterior alpha activity has been described in schizophrenia. We conclude that this feature might depict a group of schizophrenic patients with reduced hippocampal connectivity.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
The effect of adjuvant therapy with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN; 100 mg/kg given intraperitoneally every 8 h for 5 days) on brain injury and learning function was evaluated in an infant rat model of pneumococcal meningitis. Meningitis led to cortical necrotic injury (median, 3.97% [range, 0%-38.9%] of the cortex), which was reduced to a median of 0% (range, 0%-30.9%) of the cortex (P<.001) by PBN. However, neuronal apoptosis in the hippocampal dentate gyrus was increased by PBN, compared with that by saline (median score, 1.15 [range, 0.04-1.73] vs. 0.31 [range, 0-0.92]; P<.001). Learning function 3 weeks after cured infection, as assessed by the Morris water maze, was decreased, compared with that in uninfected control animals (P<.001). Parallel to the increase in hippocampal apoptosis, PBN further impaired learning in infected animals, compared with that in saline-treated animals (P<.02). These results contrast with those of an earlier study, in which PBN reduced cortical and hippocampal neuronal injury in group B streptococcal meningitis. Thus, in pneumococcal meningitis, antioxidant therapy with PBN aggravates hippocampal injury and learning deficits.
Resumo:
To evaluate the role of tumor necrosis factor-alpha (TNF-alpha) in neuronal injury in experimental group B streptococcal meningitis, infected neonatal rats were treated with a monoclonal antibody against TNF-alpha (20 mg/kg intraperitoneally) or saline given at the time of infection. Histopathology after 24 h showed necrosis in the cortex and apoptosis in the hippocampal dentate gyrus. Treated animals had significantly less hippocampal injury than did controls (P < .001) but had similar cortical injury and cerebrospinal fluid (CSF) inflammation. The antibody was then administered directly intracisternally (170 microg) to test whether higher CSF concentrations reduced inflammation or cortical injury. Again, hippocampal apoptosis was significantly reduced (P < .01), while cortical injury and inflammation were not. Thus, TNF-alpha played a critical role in neuronal apoptosis in the hippocampus, while it was not essential for the development of inflammation and cortical injury in this model.
Resumo:
TNFalpha (TNF) critically regulates inflammation-driven atherosclerosis. Because the transmembrane (tmTNF) and soluble (sTNF) forms of TNF possess distinct immuno-modulatory properties, we hypothesized that they might differentially regulate atherosclerosis progression. Three groups of male ApoE(-/-) mice were studied: one expressing wild-type TNF (WT-TNF); one expressing exclusively a mutated non-cleavable form of TNF (KI-TNF); and one deficient in TNF (KO-TNF). Mice aged 5 weeks were fed the high-fat diet for 5 (T5) and 15 weeks (T15) or a standard chow diet for 15 weeks. At T5, in mice fed the high-fat diet, no significant differences in lesion area were observed among the three groups, either in valves or in aortas. At T15, lesion areas in valves were significantly lower in KO-TNF mice compared with those in WT-TNF mice, whereas in KI-TNF mice, they were intermediate between KO- and WT-TNF mice but not significantly different from these two groups. In aortas, lesions in KI-TNF were comparable to those of KO-TNF, both being significantly lower than those in WT-TNF. Theses differences were not linked to circulating lipids, or to macrophage, actin, and collagen contents of lesions. At T15, in mice fed the chow diet, lesion areas in valves and the aortic arch were not significantly different between the three groups. Levels of IL-6, IFNgamma, IL-10, and Foxp3 mRNAs in spleens and production of IL-6, IL-10, MCP-1, RANTES, and TNFR-2 by peritoneal macrophages at T15 of the high-fat diet showed a decrease in pro-inflammatory status, more marked in KO-TNF than in KI-TNF mice. Apoptosis was reduced only in KO-TNF mice. In conclusion, these data show that TNF effects on atherosclerosis development are detectable at stages succeeding fatty streaks and that wild-type TNF is superior to tmTNF alone in promoting atherosclerosis. TNF-dependent progression of atherosclerosis is probably linked to the differential production of pro-inflammatory mediators whether tmTNF is preponderant or essentially cleaved. Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley ; Sons, Ltd.
Resumo:
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.