972 resultados para Allogeneic hematopoietic stem cell transplantation in Fanconi anemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Oral mucositis (OM) is a significant early complication of hematopoietic cell transplantation (HCT). This phase III randomized double-blind placebo-controlled study was designed to compare the ability of 2 different low level GaAlAs diode lasers (650 nm and 780 nm) to prevent oral mucositis in HCT patients conditioned with chemotherapy or chemoradiotherapy.Materials and methods Seventy patients were enrolled and randomized into 1 of 3 treatment groups: 650 nm laser, 780 nm laser or placebo. All active laser treatment patients received daily direct laser treatment to the lower labial mucosa, right and left buccal mucosa, lateral and ventral surfaces of the tongue, and floor of mouth with energy densities of 2 J/cm(2). Study treatment began on the first day of conditioning and continued through day +2 post HCT. Mucositis and oral pain was measured on days 0, 4, 7, 11, 14, 18, and 21 post HCT.Results the 650 nm wavelength reduced the severity of oral mucositis and pain scores. Low level laser therapy was well-tolerated and no adverse events were noted.Discussion While these results are encouraging, further study is needed to truly establish the efficacy of this mucositis prevention strategy. Future research needs to determine the effects of modification of laser parameters (e.g., wavelength, fluence, repetition rate of energy delivery, etc.) on the effectiveness of LLE laser to prevent OM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic cell transplantation (HCT) is an emerging therapy for patients with severe autoimmune diseases (AID). We report data on 368 patients with AID who underwent HCT in 64 North and South American transplantation centers reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2009. Most of the HCTs involved autologous grafts (n = 339); allogeneic HCT (n = 29) was done mostly in children. The most common indications for HCT were multiple sclerosis, systemic sclerosis, and systemic lupus erythematosus. The median age at transplantation was 38 years for autologous HCT and 25 years for allogeneic HCT. The corresponding times from diagnosis to HCT were 35 months and 24 months. Three-year overall survival after autologous HCT was 86% (95% confidence interval [CI], 81%-91%). Median follow-up of survivors was 31 months (range, 1-144 months). The most common causes of death were AID progression, infections, and organ failure. On multivariate analysis, the risk of death was higher in patients at centers that performed fewer than 5 autologous HCTs (relative risk, 3.5; 95% CI, 1.1-11.1; P = .03) and those that performed 5 to 15 autologous HCTs for AID during the study period (relative risk, 4.2; 95% CI, 1.5-11.7; P = .006) compared with patients at centers that performed more than 15 autologous HCTs for AID during the study period. AID is an emerging indication for HCT in the region. Collaboration of hematologists and other disease specialists with an outcomes database is important to promote optimal patient selection, analysis of the impact of prognostic variables and long-term outcomes, and development of clinical trials. Biol Blood Marrow Transplant 18: 1471-1478 (2012) (C) 2012 Published by Elsevier Inc. on behalf of American Society for Blood and Marrow Transplantation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells of various tissues are typically defined as multipotent cells with 'self-renewal' properties. Despite the increasing interest in stem cells, surprisingly little is known about the number of times stem cells can or do divide over a lifetime. Based on telomere-length measurements of hematopoietic cells, we previously proposed that the self-renewal capacity of hematopoietic stem cells is limited by progressive telomere attrition and that such cells divide very rapidly during the first year of life. Recent studies of patients with aplastic anemia resulting from inherited mutations in telomerase genes support the notion that the replicative potential of hematopoietic stem cells is directly related to telomere length, which is indirectly related to telomerase levels. To revisit conclusions about stem cell turnover based on cross-sectional studies of telomere length, we performed a longitudinal study of telomere length in leukocytes from newborn baboons. All four individual animals studied showed a rapid decline in telomere length (approximately 2-3 kb) in granulocytes and lymphocytes in the first year after birth. After 50-70 weeks the telomere length appeared to stabilize in all cell types. These observations suggest that hematopoietic stem cells, after an initial phase of rapid expansion, switch at around 1 year of age to a different functional mode characterized by a markedly decreased turnover rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging in vivo and cell division in vitro are associated with telomere shortening. Several lines of evidence suggest that telomere length may be a good predictor of the long term replicative capacity of cells. To investigate the natural fate of chromosome telomeres of hematopoietic stem cells in vivo, we measured the telomere length of peripheral blood granulocytes from 11 fully engrafted bone marrow transplant recipients and from their respective donors. In 10 of 11 donor–recipient pairs, the telomere length was significantly reduced in the recipient and the extent of reduction correlated inversely with the number of nucleated cells infused. These data provide internally controlled in vivo evidence that, concomitantly with their proliferation, hematopoietic stem cells lose telomere length; it is possible that, as a result, their proliferative potential is reduced. These findings must be taken into account when developing new protocols in which few stem cells are used for bone marrow transplantation or for gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After liver transplantation, migration of donor-derived hematopoietic cells to recipient can be detected in pheripheral blood. This state is termed microchimerism. The aim of this study was to investigate prospectively the presence of allogeneic microchimerism, the occurrence of acute cellular rejection and the level of immunosuppression in transplanted patients. Microchimerism occurrence between 10 days and 12 months after liver transplantation was analyzed in 47 patients aged between 15 and 65 by a two-stage nested PCR/SSP technique to detect donor MHC HLA-DR gene specifically. A pre-transplant blood sample was colleted from each patient to serve as individual negative control. Microchimerism was demonstrated in 32 (68%) of the 47 patients; of these, only 10 patients (31.2%) presented rejection. Early microchimerism was observed in 25 patients (78.12%) and late microchimerism in 7 patients (21.8%). Among the patients with microchimerism, 14 were given CyA and 18 were given FK506. In the group without microchimerism, 12 patients were given CyA and 03 were given FK506. There was a significant association between the presence of microchimerism and the absence of rejection (p=0.02) and also between microchimerism and the type of immunosuppression used. Our data indicate that microchimerism and probably differentiation of donor-derived leukocytes can have relevant immunologic effects both in terms of sensitization of recipient and in terms of immunomodulation toward tolerance induction. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic SCT (HSCT) and high-dose chemotherapy are being explored as therapy for various human refractory immune-mediated conditions, including inflammatory bowel diseases (IBD). Nevertheless, the exact immunological mechanisms by which the BM cells (BMCs) or immunosuppression provide remission from these diseases is not yet clear. In this work, we investigated the role of these therapies in the modulation of gut mucosal inflammation in an experimental model of IBD. Colitis was induced in mice by 2,4,6-trinitrobenzenesulfonic acid and after CY was administered (200 mg/kg) alone (CY group) or followed by BMCs infusion (HSCT group). Animals were followed for 60 days. Both HSCT and CY reduced the histopathological features of colitis significantly. Infused cells were localized in the gut, and a marked decrease of CD4(+) leukocytes in the inflammatory infiltrate on days +7 and +14 and of CD8(+) cells on day +7 was found in both treatments allied to impressive reduction of proinflammatory Th1 and Th17 cytokines. Although chemotherapy alone was the best treatment regarding the induction of immunosuppressive molecules, only HSCT resulted in increased survival rates compared with the control group. Our findings indicate that high-dose CY followed by HSCT is effective in the modulation of mucosal immunity and in accelerating immune reconstitution after BMT, thus providing valuable tools to support the development and understanding of novel therapeutic strategies for IBD. Bone Marrow Transplantation (2010) 45, 1562-1571; doi:10.1038/bmt.2010.6; published online 15 March 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survival of bone marrow transplant recipients requiting mechanical ventilation is poor but improving. This study reports a retrospective audit of all haematopoietic stem cell transplant (HSCT) recipients requiring mechanical ventilation at an Australian institution over a period spanning 11 years from 1988 to 1998. Recipients of autologous transplants are significantly less likely to require mechanical ventilation than recipients of allogeneic transplants. Of 50 patients requiring mechanical ventilation, 28% survived to discharge from the intensive care unit, 20% to 30 days post-ventilation, 18% to discharge from hospital and 12% to six months post-ventilation. Risk factors for mortality in the HSCT recipient requiting mechanical ventilation include renal, hepatic and cardiovascular insufficiency and greater severity of illness. Mechanical ventilation of HSCT recipients should not be regarded as futile therapy.