929 resultados para Adsorption. Zeolite 13X. Langmuir model. Dynamic modeling. Pyrolysis of sewage sludge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The link between lower and upper airways has been reported since the beginning of 1800s. They share the same pseudostratified ciliated columnar epithelium lining and the concept of one airway, one disease is quite well widespread. Nasal polyposis and asthma share basically the same inflammatory process: predominant infiltration of eosinophils, mucus cell hyperplasia, edema, thickened basal membrane, polarization for Th2 cell immune response, similar pro-inflammatory mediators are increased, for example cysteinyl leukotrienes. If the lower and upper airways share a lot of common epithelial structural features so why is the edema in the nasal mucosa able to increase so much the size of the mucosa to the point of developing polyps? The article tries to underline some differences between the nasal and the bronchial mucosa that could be implicated in this aberrant change from normal mucosa to polyps. This paper creates the concept that there are no polyps with the features of nasal polyposis disease in the lower airway and through it is developed the hypothesis of the nasal polyps origin could partially lie on the difference between the upper and lower airway histology. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the global phase diagram of a Maier-Saupe lattice model with the inclusion of shape-disordered degrees of freedom to mimic a mixture of oblate and prolate molecules (discs and cylinders). In the neighborhood of a Landau multicritical point, solutions of the statistical problem can be written as a Landau-de Gennes expansion for the free energy. If the shape-disordered degrees of freedom are quenched, we confirm the existence of a biaxial nematic structure. If orientational and disorder degrees of freedom are allowed to thermalize, this biaxial solution becomes thermodynamically unstable. Also, we use a two-temperature formalism to mimic the presence of two distinct relaxation times, and show that a slight departure from complete thermalization is enough to stabilize a biaxial nematic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical application of human embryonic stem cells will be possible, when cell lines are created under xeno-free and defined conditions. We aimed to establish methodologies for parthenogenetic activation, culture to blastocyst and mechanical isolation of the inner cell mass (ICM) using bovine oocytes, as a model for derivation and proliferation of human embryonic stem cells under defined xeno-free culture conditions. Cumulus-oocyte-complexes were in vitro matured and activated using Ca(2+)Ionophore and 6-DMAP or in vitro fertilized (IVF). Parthenotes and biparental embryos were cultured to blastocysts, when their ICM was mechanically isolated and placed onto a substrate of fibronectin in StemProA (R) medium. After attachment, primary colonies were left to proliferate and stained for pluripotency markers, alkaline phosphatase and Oct-4. Parthenogenesis and fertilization presented significantly different success rates (91 and 79 %, respectively) and blastocyst formation (40 and 43 %, respectively). ICMs from parthenogenetic and IVF embryos formed primary and expanded colonies at similar rates (39 % and 33 %, respectively). Six out of eight parthenogenetic colonies tested positive for alkaline phosphatase. Three colonies were analyzed for Oct-4 and they all tested positive for this pluripotency marker. Our data show that Ca2+ Ionophore, and 6-DMAP are efficient in creating large numbers of blastocysts to be employed as a model for human oocyte activation and embryo development. After mechanical isolation, parthenogetic derived ICMs showed a good rate of derivation in fibronectin and Stem-Pro forming primary and expanded colonies of putative embryonic stem cells. This methodology may be a good strategy for parthenogenetic activation of discarded human oocytes and derivation in defined conditions for future therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Máster Universitario en Oceanografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general aim of this work is to contribute to the energy performance assessment of ventilated façades by the simultaneous use of experimental data and numerical simulations. A significant amount of experimental work was done on different types of ventilated façades with natural ventilation. The measurements were taken on a test building. The external walls of this tower are rainscreen ventilated façades. Ventilation grills are located at the top and at the bottom of the tower. In this work the modelling of the test building using a dynamic thermal simulation program (ESP-r) is presented and the main results discussed. In order to investigate the best summer thermal performance of rainscreen ventilated skin façade a study for different setups of rainscreen walls was made. In particular, influences of ventilation grills, air cavity thickness, skin colour, skin material, orientation of façade were investigated. It is shown that some types of rainscreen ventilated façade typologies are capable of lowering the cooling energy demand of a few percent points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportprozesse von anisotropen metallischen Nanopartikeln wie zum Beispiel Gold-Nanostäbchen in komplexen Flüssigkeiten und/oder begrenzten Geometrien spielen eine bedeutende Rolle in einer Vielzahl von biomedizinischen und industriellen Anwendungen. Ein Weg zu einem tiefen, grundlegenden Verständnis von Transportmechanismen ist die Verwendung zweier leistungsstarker Methoden - dynamischer Lichtstreuung (DLS) und resonanzverstärkter Lichtstreuung (REDLS) in der Nähe einer Grenzfläche. In dieser Arbeit wurden nanomolare Suspensionen von Gold-Nanostäbchen, stabilisiert mit Cetyltrimethylammoniumbromid (CTAB), mit DLS sowie in der Nähe einer Grenzfläche mit REDLS untersucht. Mit DLS wurde eine wellenlängenabhängige Verstärkung der anisotropen Streuung beobachtet, welche sich durch die Anregung von longitudinaler Oberflächenplasmonenresonanz ergibt. Die hohe Streuintensität nahe der longitudinalen Oberflächenplasmonenresonanzfrequenz für Stäbchen, welche parallel zum anregenden optischen Feld liegen, erlaubte die Auflösung der translationalen Anisotropie in einem isotropen Medium. Diese wellenlängenabhängige anisotrope Lichtstreuung ermöglicht neue Anwendungen wie etwa die Untersuchung der Dynamik einzelner Partikel in komplexen Umgebungen mittels depolarisierter dynamischer Lichtstreuung. In der Nähe einer Grenzfläche wurde eine starke Verlangsamung der translationalen Diffusion beobachtet. Hingegen zeigte sich für die Rotation zwar eine ausgeprägte aber weniger starke Verlangsamung. Um den möglichen Einfluss von Ladung auf der festen Grenzfläche zu untersuchen, wurde das Metall mit elektrisch neutralem Polymethylmethacrylat (PMMA) beschichtet. In einem weiteren Ansatz wurde das CTAB in der Gold-Nanostäbchen Lösung durch das kovalent gebundene 16-Mercaptohexadecyltrimethylammoniumbromid (MTAB) ersetzt. Daraus ergab sich eine deutlich geringere Verlangsamung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Airbus GmbH (Hamburg) has been developed a new design of Rear Pressure Bulkhead (RPB) for the A320-family. The new model has been formed with vacuum forming technology. During this process the wrinkling phenomenon occurs. In this thesis is described an analytical model for prediction of wrinkling based on the energetic method of Timoshenko. Large deflection theory has been used for analyze two cases of study: a simply supported circular thin plate stamped by a spherical punch and a simply supported circular thin plate formed with vacuum forming technique. If the edges are free to displace radially, thin plates will develop radial wrinkles near the edge at a central deflection approximately equal to four plate thicknesses w0/ℎ≈4 if they’re stamped by a spherical punch and w0/ℎ≈3 if they’re formed with vacuum forming technique. Initially, there are four symmetrical wrinkles, but the number increases if the central deflection is increased. By using experimental results, the “Snaptrhough” phenomenon is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software is available, which simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. These dynamic models are based upon equations derived from the transport concepts such as electromigration, diffusion, electroosmosis and imposed hydrodynamic buffer flow that are applied to user-specified initial distributions of analytes and electrolytes. They are able to predict the evolution of electrolyte systems together with associated properties such as pH and conductivity profiles and are as such the most versatile tool to explore the fundamentals of electrokinetic separations and analyses. In addition to revealing the detailed mechanisms of fundamental phenomena that occur in electrophoretic separations, dynamic simulations are useful for educational purposes. This review includes a list of current high-resolution simulators, information on how a simulation is performed, simulation examples for zone electrophoresis, ITP, IEF and EKC and a comprehensive discussion of the applications and achievements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Intracisternal blood injection is the most common applied experimental subarachnoid bleeding technique in rabbits. The model comprises examiner-dependent variables and does not closely represent the human pathophysiological sequelae of ruptured cerebral aneurysm. The degree of achieved delayed cerebral vasospasm (DCVS) in this model is often mild. The aim of this study was to characterize and evaluate the feasibility of a clinically more relevant experimental SAH in vivo model. SAH was performed by arterial blood shunting from the subclavian artery into the great cerebral cistern. A total of five experiments were performed. Intracranial pressure (ICP), arterial blood pressure, heart rate, arterial blood gas analysis, and neurological status were monitored throughout the experiments. SAH induced vasoconstriction of the basilar artery was 52.1±3.4% on day 3 compared to baseline (P<0.05). Post-mortem gross examination of the brain showed massive blood clot accumulation around the brainstem and ventral surface of the brain. The novel technique offers an examiner independent SAH induction and triggers high degrees of delayed cerebral vasospasm. The severity of vasospasm attained offers a unique opportunity to evaluate future therapeutic treatment options.