820 resultados para Adjuvanted Influenza Vaccines
Resumo:
BACKGROUND: Influenza-associated myositis (IAM) is an infrequent and poorly known complication of influenza virus infection in children. The aim of this study was to describe five cases of IAM and to review the literature on IAM in children. PATIENTS AND METHODS: We conducted a retrospective analysis of cases of IAM diagnosed at two university children's hospitals in Switzerland during two consecutive influenza seasons. Findings were compared with 39 individual case reports and five publications summarizing an additional 272 cases identified by a medical online library (MEDLINE) search. RESULTS: Overall, 316 cases were analyzed. IAM typically occurred in school-aged children with a 2:1 male predominance. Influenza B and A viruses were identified in 76% and 24% of cases, respectively. The median interval between onset of influenza and onset of IAM was 3 days (range 0-18). The calf muscles were involved alone or together with other muscle groups in 69% and 31% of cases, respectively. Blood creatine phosphokinase (CPK) concentration was invariably elevated. Median duration to clinical recovery was 3 days (range 1-30). Rhabdomyolysis occurred in ten of 316 patients (3%), was more common in girls (80%), more often associated with influenza A (86%), and led to renal failure in eight patients (80%). CONCLUSION: Clinical and laboratory findings of IAM are highly characteristic and allow a rapid diagnosis during the influenza season.
Resumo:
The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model’s potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed.
Resumo:
Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.
Resumo:
Respiratory disease in beef calves has been associated with the stress of weaning. Management practices commonly delay vaccination of calves to this time, and weaning stress could potentially suppress the immune response. To reduce this stress we have been experimenting with a procedure termed “pasture weaning” in which the dams are removed and the calves remain on pasture. Observation suggests that calves weaned with this approach adapt to the weaned state much better than those held in drylot. Consequently, one would expect less stress-mediated effects including those on the immune system. Calves were weaned and assigned to groups that were pasture or drylot weaned, and calves within the groups were vaccinated with one of two inactivated virus vaccines by either the intramuscular or subcutaneous route. Weaning placement did not affect antibody responses to the viruses included in the vaccines. The route of administration did not influence responses with subcutaneous injection inducing responses equivalent to the intramuscular site. Utilization of this route for vaccination could be advantageous because it precludes the tissue damage and hidden abscessation that sometimes results from intramuscular injections. A distinct difference was noted in the immunogenicity of the vaccines with the Vira Shield product yielding significantly better responses to all viral entities.
Resumo:
A number of infectious agents are potential threats to the fetus of a pregnant cow and may result in abortion. These agents include Leptospira sp., Campylobacter fetus and viruses such as infectious bovine rhinotracheitis (IBR) and bovine virus diarrhea (BVD). Maintenance in the cow of a high level of immunity to these agents during pregnancy can insure protection of the fetus. In particular, vaccines against BVD and IBR viruses can establish protective immunity throughout gestation. An appropriate vaccination regimen prior to breeding is required to establish this protective immunity. This can be achieved with a single dose of certain modified live virus vaccines, but those vaccines must be administered at least 30 days prior to breeding to avoid interference with conception. We have evaluated an oil-adjuvanted inactivated virus vaccine in cattle with differing immunological histories. Two doses of the vaccine administered 30 days apart to serologically negative animals induced appreciable levels of BVD and IBR anti-viral antibodies with persisting titers throughout gestation. In other experiments a single dose of the vaccine was administered to: (1) animals given two doses of the vaccine several months earlier, (2) animals previously vaccinated with other inactivated virus vaccines, or (3) animals previously vaccinated with modified live virus vaccine. The vaccine consistently induced marked anamnestic responses in these animals. Not only did mean titers rise, but a vast majority of individual animals responded. This contrasts with efforts to boost titers with modified live virus vaccines where the effect may be erratic among animals. The safety and efficacy of selected inactivated viral vaccines argues for their use in prebreeding immunization of beef cows.
Resumo:
The objective of this experimentation was to determine if circulating antibody titers to parainfluenza type-3 (PI-3) and infectious bovine rhinotracheitis (IBR) viruses could be enhanced by a combination of vaccines. The vaccines utilized were a modified live virus vaccine administered by the intranasal route and an inactivated virus vaccine injected intramuscularly. Virus neutralization tests were conducted on sera obtained at intervals before and following vaccination. Unfortunately, the calves were apparently exposed naturally to PI-3 virus, and the responses to that virus were inconclusive. However, antibody responses to IBR virus were dramatically enhanced by the combination of the two vaccines.
Resumo:
Three commercial inactivated virus vaccines were evaluated for immunogenicity in young calves with residual maternal antibodies. Groups of 30 calves were administered each of the vaccines at the start of the experimentation and were administered a second dose 32 days later. Serum was obtained from these calves and 30 calves in a nonvaccinated control group prior to vaccination and at 32, 61, 99 and 125 days thereafter. Antibody responses to viruses in two of the vaccines were extremely limited. The third vaccine overcame suppression by maternal antibodies and elicited responses clearly differentiated from antibody levels in the control group of calves.
Resumo:
BACKGROUND Infectious diseases after solid organ transplantation (SOT) are one of the major complications in transplantation medicine. Vaccination-based prevention is desirable, but data on the response to active vaccination after SOT are conflicting. METHODS In this systematic review, we identify the serologic response rate of SOT recipients to post-transplantation vaccination against tetanus, diphtheria, polio, hepatitis A and B, influenza, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitides, tick-borne encephalitis, rabies, varicella, mumps, measles, and rubella. RESULTS Of the 2478 papers initially identified, 72 were included in the final review. The most important findings are that (1) most clinical trials conducted and published over more than 30 years have all been small and highly heterogeneous regarding trial design, patient cohorts selected, patient inclusion criteria, dosing and vaccination schemes, follow up periods and outcomes assessed, (2) the individual vaccines investigated have been studied predominately only in one group of SOT recipients, i.e. tetanus, diphtheria and polio in RTX recipients, hepatitis A exclusively in adult LTX recipients and mumps, measles and rubella in paediatric LTX recipients, (3) SOT recipients mount an immune response which is for most vaccines lower than in healthy controls. The degree to which this response is impaired varies with the type of vaccine, age and organ transplanted and (4) for some vaccines antibodies decline rapidly. CONCLUSION Vaccine-based prevention of infectious diseases is far from satisfactory in SOT recipients. Despite the large number of vaccination studies preformed over the past decades, knowledge on vaccination response is still limited. Even though the protection, which can be achieved in SOT recipients through vaccination, appears encouraging on the basis of available data, current vaccination guidelines and recommendations for post-SOT recipients remain poorly supported by evidence. There is an urgent need to conduct appropriately powered vaccination trials in well-defined SOT recipient cohorts.
Resumo:
For acutely lethal influenza infections, the relative pathogenic contributions of direct viral damage to lung epithelium versus dysregulated immunity remain unresolved. Here, we take a top-down systems approach to this question. Multigene transcriptional signatures from infected lungs suggested that elevated activation of inflammatory signaling networks distinguished lethal from sublethal infections. Flow cytometry and gene expression analysis involving isolated cell subpopulations from infected lungs showed that neutrophil influx largely accounted for the predictive transcriptional signature. Automated imaging analysis, together with these gene expression and flow data, identified a chemokine-driven feedforward circuit involving proinflammatory neutrophils potently driven by poorly contained lethal viruses. Consistent with these data, attenuation, but not ablation, of the neutrophil-driven response increased survival without changing viral spread. These findings establish the primacy of damaging innate inflammation in at least some forms of influenza-induced lethality and provide a roadmap for the systematic dissection of infection-associated pathology.
Resumo:
Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.
Resumo:
An estimated 499 million curable sexually transmitted infections (STIs; gonorrhea, chlamydia, syphilis, and trichomoniasis) occurred globally in 2008. In addition, well over 500 million people are estimated to have a viral STI such as herpes simplex virus type 2 (HSV-2) or human papillomavirus (HPV) at any point in time. STIs result in a large global burden of sexual, reproductive, and maternal-child health consequences, including genital symptoms, pregnancy complications, cancer, infertility, and enhanced HIV transmission, as well as important psychosocial consequences and financial costs. STI control strategies based primarily on behavioral primary prevention and STI case management have had clear successes, but gains have not been universal. Current STI control is hampered or threatened by several behavioral, biological, and implementation challenges, including a large proportion of asymptomatic infections, lack of feasible diagnostic tests globally, antimicrobial resistance, repeat infections, and barriers to intervention access, availability, and scale-up. Vaccines against HPV and hepatitis B virus offer a new paradigm for STI control. Challenges to existing STI prevention efforts provide important reasons for working toward additional STI vaccines. We summarize the global epidemiology of STIs and STI-associated complications, examine challenges to existing STI prevention efforts, and discuss the need for new STI vaccines for future prevention efforts.
Resumo:
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.