747 resultados para Adaptive clustering
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.
Resumo:
One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
In 1859, Charles Darwin published his theory of evolution by natural selection, the process occurring based on fitness benefits and fitness costs at the individual level. Traditionally, evolution has been investigated by biologists, but it has induced mathematical approaches, too. For example, adaptive dynamics has proven to be a very applicable framework to the purpose. Its core concept is the invasion fitness, the sign of which tells whether a mutant phenotype can invade the prevalent phenotype. In this thesis, four real-world applications on evolutionary questions are provided. Inspiration for the first two studies arose from a cold-adapted species, American pika. First, it is studied how the global climate change may affect the evolution of dispersal and viability of pika metapopulations. Based on the results gained here, it is shown that the evolution of dispersal can result in extinction and indeed, evolution of dispersalshould be incorporated into the viability analysis of species living in fragmented habitats. The second study is focused on the evolution of densitydependent dispersal in metapopulations with small habitat patches. It resulted a very surprising unintuitive evolutionary phenomenon, how a non-monotone density-dependent dispersal may evolve. Cooperation is surprisingly common in many levels of life, despite of its obvious vulnerability to selfish cheating. This motivated two applications. First, it is shown that density-dependent cooperative investment can evolve to have a qualitatively different, monotone or non-monotone, form depending on modelling details. The last study investigates the evolution of investing into two public-goods resources. The results suggest one general path by which labour division can arise via evolutionary branching. In addition to applications, two novel methodological derivations of fitness measures in structured metapopulations are given.
Resumo:
Ryegrass is the main weed in wheat crop, causing yield loss due to competition by environmental resources. The objectives of this study were to estimate the fitness cost of ryegrass biotypes with low-level resistance and susceptible to fluazifop and to investigate the relative competitive ability of these biotypes between themselves and against the crop. Thus, fitness cost and competitive ability experiments were conducted under greenhouse conditions. For the fitness cost experiments, the low-level resistant ryegrass biotypes and those susceptible to fluazifop were used. For competitive ability, the treatments were arranged in a replacement series, with five proportions of the wheat cultivar FUNDACEP Horizonte and the low-level resistant and susceptible ryegrass biotypes 100:0, 75:25, 50:50, 25:75 and 0:100. Competitive analysis was carried out through diagrams applied to the replacement experiments and use of relative competitiveness indices. Variables evaluated were plant height, in the fitness cost experiment, and leaf area and shoot dry biomass in both experiments. The ryegrass biotypes show overall similar fitness cost and competitive ability. The wheat cultivar FUNDACEP Horizonte is superior in competitive ability to the ryegrass biotype with low-level resistance and equivalent to the susceptible biotype.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
Inselbergs are isolated rock outcrops that rise abruptly above the surrounding plains. Granitic and gneissic inselbergs are geologically and geomorphologically old and occur throughout a broad spectrum of climatic zones. They form microclimatically and edaphically dry growth sites that support a highly specialized vegetation. Based on physiognomic criteria a number of habitat types can be distinguished that are widespread on inselbergs (e.g. ephemeral flush vegetation, monocotyledonous mats, rock pools). Three hot spots of global inselberg plant diversity can be identified which are both rich in species and endemics: a) southeastern Brazil, b) Madagascar and c) southwestern Australia.
Resumo:
The purpose of this thesis is to find out whether all the peer to peer lenders are unworthy of credit and also if there are single qualities or combinations of qualities that determine the probability of default of a person or group of people. Distinguishing qualities are searched with self-organizing maps (SOM). Qualities and groups of people found by the self-organizing map are then compared to the average. The comparison is carried out by looking how big proportion of borrowers meeting the criteria is two months or more behind with their payments. Research data used is collected by an Estonian peer to peer lending company during the years of 2011-2014. Data consists of peer to peer borrowers and information gathered from them.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
This master thesis work introduces the fuzzy tolerance/equivalence relation and its application in cluster analysis. The work presents about the construction of fuzzy equivalence relations using increasing generators. Here, we investigate and research on the role of increasing generators for the creation of intersection, union and complement operators. The objective is to develop different varieties of fuzzy tolerance/equivalence relations using different varieties of increasing generators. At last, we perform a comparative study with these developed varieties of fuzzy tolerance/equivalence relations in their application to a clustering method.
Resumo:
Ecological specialization in resource utilization has various facades ranging from nutritional resources via host use of parasites or phytophagous insects to local adaptation in different habitats. Therefore, the evolution of specialization affects the evolution of most other traits, which makes it one of the core issues in the theory of evolution. Hence, the evolution of specialization has gained enormous amounts of research interest, starting already from Darwin’s Origin of species in 1859. Vast majority of the theoretical studies has, however, focused on the mathematically most simple case with well-mixed populations and equilibrium dynamics. This thesis explores the possibilities to extend the evolutionary analysis of resource usage to spatially heterogeneous metapopulation models and to models with non-equilibrium dynamics. These extensions are enabled by the recent advances in the field of adaptive dynamics, which allows for a mechanistic derivation of the invasion-fitness function based on the ecological dynamics. In the evolutionary analyses, special focus is set to the case with two substitutable renewable resources. In this case, the most striking questions are, whether a generalist species is able to coexist with the two specialist species, and can such trimorphic coexistence be attained through natural selection starting from a monomorphic population. This is shown possible both due to spatial heterogeneity and due to non-equilibrium dynamics. In addition, it is shown that chaotic dynamics may sometimes inflict evolutionary suicide or cyclic evolutionary dynamics. Moreover, the relations between various ecological parameters and evolutionary dynamics are investigated. Especially, the relation between specialization and dispersal propensity turns out to be counter-intuitively non-monotonous. This observation served as inspiration to the analysis of joint evolution of dispersal and specialization, which may provide the most natural explanation to the observed coexistence of specialist and generalist species.
Resumo:
Verbal fluency tests are used as a measure of executive functions and language, and can also be used to evaluate semantic memory. We analyzed the influence of education, gender and age on scores in a verbal fluency test using the animal category, and on number of categories, clustering and switching. We examined 257 healthy participants (152 females and 105 males) with a mean age of 49.42 years (SD = 15.75) and having a mean educational level of 5.58 (SD = 4.25) years. We asked them to name as many animals as they could. Analysis of variance was performed to determine the effect of demographic variables. No significant effect of gender was observed for any of the measures. However, age seemed to influence the number of category changes, as expected for a sensitive frontal measure, after being controlled for the effect of education. Educational level had a statistically significant effect on all measures, except for clustering. Subject performance (mean number of animals named) according to schooling was: illiterates, 12.1; 1 to 4 years, 12.3; 5 to 8 years, 14.0; 9 to 11 years, 16.7, and more than 11 years, 17.8. We observed a decrease in performance in these five educational groups over time (more items recalled during the first 15 s, followed by a progressive reduction until the fourth interval). We conclude that education had the greatest effect on the category fluency test in this Brazilian sample. Therefore, we must take care in evaluating performance in lower educational subjects.