794 resultados para Adaptive Neural Fuzzy control
Resumo:
We explored the role of modularity as a means to improve evolvability in populations of adaptive agents. We performed two sets of artificial life experiments. In the first, the adaptive agents were neural networks controlling the behavior of simulated garbage collecting robots, where modularity referred to the networks architectural organization and evolvability to the capacity of the population to adapt to environmental changes measured by the agents performance. In the second, the agents were programs that control the changes in network's synaptic weights (learning algorithms), the modules were emerged clusters of symbols with a well defined function and evolvability was measured through the level of symbol diversity across programs. We found that the presence of modularity (either imposed by construction or as an emergent property in a favorable environment) is strongly correlated to the presence of very fit agents adapting effectively to environmental changes. In the case of learning algorithms we also observed that character diversity and modularity are also strongly correlated quantities. © 2014 Springer Science+Business Media New York.
Resumo:
Signal processing is an important topic in technological research today. In the areas of nonlinear dynamics search, the endeavor to control or order chaos is an issue that has received increasing attention over the last few years. Increasing interest in neural networks composed of simple processing elements (neurons) has led to widespread use of such networks to control dynamic systems learning. This paper presents backpropagation-based neural network architecture that can be used as a controller to stabilize unsteady periodic orbits. It also presents a neural network-based method for transferring the dynamics among attractors, leading to more efficient system control. The procedure can be applied to every point of the basin, no matter how far away from the attractor they are. Finally, this paper shows how two mixed chaotic signals can be controlled using a backpropagation neural network as a filter to separate and control both signals at the same time. The neural network provides more effective control, overcoming the problems that arise with control feedback methods. Control is more effective because it can be applied to the system at any point, even if it is moving away from the target state, which prevents waiting times. Also control can be applied even if there is little information about the system and remains stable longer even in the presence of random dynamic noise.
Resumo:
The principles of adaptive routing and multi-agent control for information flows in IP-networks.
Resumo:
In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.
Resumo:
There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.
Resumo:
In this paper we propose an adaptive power and message rate control method for safety applications at road intersections. The design objectives are to firstly provide guaranteed QoS support to both high priority emergency safety applications and low priority routine safety applications and secondly maximize channel utilization. We use an offline simulation based approach to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network with certain safety QoS requirements. The identified configurations are then used online by roadside access points (AP) adaptively according to estimated number of vehicles. Simulation results show that this adaptive method could provide required QoS support to safety applications and it significantly outperforms a fixed control method. © 2013 International Information Institute.
Resumo:
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM.
Resumo:
The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.
Resumo:
In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices.
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007