871 resultados para Ad hoc network
Resumo:
During medical emergencies, the ability to communicate the state and position of injured individuals is essential. In critical situations or crowd aggregations, this may result difficult or even impossible due to the inaccuracy of verbal communication, the lack of precise localization for the medical events, and/or the failure/congestion of infrastructure-based communication networks. In such a scenario, a temporary (ad hoc) wireless network for disseminating medical alarms to the closest hospital, or medical field personnel, can be usefully employed to overcome the mentioned limitations. This is particularly true if the ad hoc network relies on the mobile phones that people normally carry, since they are automatically distributed where the communication needs are. Nevertheless, the feasibility and possible implications of such a network for medical alarm dissemination need to be analysed. To this aim, this paper presents a study on the feasibility of medical alarm dissemination through mobile phones in an urban environment, based on realistic people mobility. The results showed the dependence between the medical alarm delivery rates and both people and hospitals density. With reference to the considered urban scenario, the time needed to delivery medical alarms to the neighbour hospital with high reliability is in the order of minutes, thus revealing the practicability of the reported network for medical alarm dissemination. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Today's wireless networks rely mostly on infrastructural support for their operation. With the concept of ubiquitous computing growing more popular, research on infrastructureless networks have been rapidly growing. However, such types of networks face serious security challenges when deployed. This dissertation focuses on designing a secure routing solution and trust modeling for these infrastructureless networks. ^ The dissertation presents a trusted routing protocol that is capable of finding a secure end-to-end route in the presence of malicious nodes acting either independently or in collusion, The solution protects the network from active internal attacks, known to be the most severe types of attacks in an ad hoc application. Route discovery is based on trust levels of the nodes, which need to be dynamically computed to reflect the malicious behavior in the network. As such, we have developed a trust computational model in conjunction with the secure routing protocol that analyzes the different malicious behavior and quantifies them in the model itself. Our work is the first step towards protecting an ad hoc network from colluding internal attack. To demonstrate the feasibility of the approach, extensive simulation has been carried out to evaluate the protocol efficiency and scalability with both network size and mobility. ^ This research has laid the foundation for developing a variety of techniques that will permit people to justifiably trust the use of ad hoc networks to perform critical functions, as well as to process sensitive information without depending on any infrastructural support and hence will enhance the use of ad hoc applications in both military and civilian domains. ^
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
Vehicular networks, also known as VANETs, are an ad-hoc network formed by vehicles and road-side units. Nowadays they have been attracting big interest both from researchers as from the automotive industry. With the upcoming of automotive specific operating systems and self-driving cars, the use of applications on vehicles and the integration with common mobile devices is becoming a big part of VANETs. Although many advances have been made on this field, there is still a big discrepancy between the communication layer services provided by VANETs and the user level services, namely those accessible through mobile applications on other networks and technologies. Users and developers are accustomed to user-to-user or user-tobusiness communication without explicit concerns related with the available communication transport layer. Such is not possible in VANETs since people may use more than one vehicle. However, to send a message to a specific user in these networks, there is a need to know the ID of the vehicle where the user is, meaning that there is a lack of services that map each individual user to VANETs endpoint (vehicle identification). This dissertation work proposes VANESS, a naming service as a resource to support user-to-user communication within a heterogeneous scenario comprising typical ISP scenario and VANETs focused on mobile devices. The proposed system is able to map the user to an end point either locally (i.e. there is not internet connection at all), online (i.e. system is not in a vehicular network but has direct internet connection) and using a gateway (i.e. the system is in a vehicular network where some of the nodes have internet access and will act as a gateway). VANESS was fully implemented on android OS with results proving his viability, and partially on iOS showing its multiplatform capabilities.
Resumo:
A medição precisa da força é necessária para muitas aplicações, nomeadamente, para a determinação da resistência mecânica dos materiais, controlo de qualidade durante a produção, pesagem e segurança de pessoas. Dada a grande necessidade de medição de forças, têm-se desenvolvido, ao longo do tempo, várias técnicas e instrumentos para esse fim. Entre os vários instrumentos utilizados, destacam-se os sensores de força, também designadas por células de carga, pela sua simplicidade, precisão e versatilidade. O exemplo mais comum é baseado em extensómetros elétricos do tipo resistivo, que aliados a uma estrutura formam uma célula de carga. Este tipo de sensores possui sensibilidades baixas e em repouso, presença de offset diferente de zero, o que torna complexo o seu condicionamento de sinal. Este trabalho apresenta uma solução para o condicionamento e aquisição de dados para células de carga que, tanto quanto foi investigado, é inovador. Este dispositivo permite efetuar o condicionamento de sinal, digitalização e comunicação numa estrutura atómica. A ideia vai de encontro ao paradigma dos sensores inteligentes onde um único dispositivo eletrónico, associado a uma célula de carga, executa um conjunto de operações de processamento de sinal e transmissão de dados. Em particular permite a criação de uma rede ad-hoc utilizando o protocolo de comunicação IIC. O sistema é destinado a ser introduzido numa plataforma de carga, desenvolvida na Escola Superior de Tecnologia e Gestão de Bragança, local destinado à sua implementação. Devido à sua estratégia de conceção para a leitura de forças em três eixos, contém quatro células de carga, com duas saídas cada, totalizando oito saídas. O hardware para condicionamento de sinal já existente é analógico, e necessita de uma placa de dimensões consideráveis por cada saída. Do ponto de vista funcional, apresenta vários problemas, nomeadamente o ajuste de ganho e offset ser feito manualmente, tornando-se essencial um circuito com melhor desempenho no que respeita a lidar com um array de sensores deste tipo.
Resumo:
The operation of Autonomous Underwater Vehicles (AUVs) within underwater sensor network fields provides an opportunity to reuse the network infrastructure for long baseline localisation of the AUV. Computationally efficient localisation can be accomplished using off-the-shelf hardware that is comparatively inexpensive and which could already be deployed in the environment for monitoring purposes. This paper describes the development of a particle filter based localisation system which is implemented onboard an AUV in real-time using ranging information obtained from an ad-hoc underwater sensor network. An experimental demonstration of this approach was conducted in a lake with results presented illustrating network communication and localisation performance.
Resumo:
We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.
Resumo:
We study the problem of optimal sequential (''as-you-go'') deployment of wireless relay nodes, as a person walks along a line of random length (with a known distribution). The objective is to create an impromptu multihop wireless network for connecting a packet source to be placed at the end of the line with a sink node located at the starting point, to operate in the light traffic regime. In walking from the sink towards the source, at every step, measurements yield the transmit powers required to establish links to one or more previously placed nodes. Based on these measurements, at every step, a decision is made to place a relay node, the overall system objective being to minimize a linear combination of the expected sum power (or the expected maximum power) required to deliver a packet from the source to the sink node and the expected number of relay nodes deployed. For each of these two objectives, two different relay selection strategies are considered: (i) each relay communicates with the sink via its immediate previous relay, (ii) the communication path can skip some of the deployed relays. With appropriate modeling assumptions, we formulate each of these problems as a Markov decision process (MDP). We provide the optimal policy structures for all these cases, and provide illustrations of the policies and their performance, via numerical results, for some typical parameters.
Resumo:
In the context of wireless sensor networks, we are motivated by the design of a tree network spanning a set of source nodes that generate packets, a set of additional relay nodes that only forward packets from the sources, and a data sink. We assume that the paths from the sources to the sink have bounded hop count, that the nodes use the IEEE 802.15.4 CSMA/CA for medium access control, and that there are no hidden terminals. In this setting, starting with a set of simple fixed point equations, we derive explicit conditions on the packet generation rates at the sources, so that the tree network approximately provides certain quality of service (QoS) such as end-to-end delivery probability and mean delay. The structures of our conditions provide insight on the dependence of the network performance on the arrival rate vector, and the topological properties of the tree network. Our numerical experiments suggest that our approximations are able to capture a significant part of the QoS aware throughput region (of a tree network), that is adequate for many sensor network applications. Furthermore, for the special case of equal arrival rates, default backoff parameters, and for a range of values of target QoS, we show that among all path-length-bounded trees (spanning a given set of sources and the data sink) that meet the conditions derived in the paper, a shortest path tree achieves the maximum throughput. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.
Resumo:
Data caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traf c considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the power usage, caching overhead and delay by reducing the number of control messages flooded into the network .A cache discovery process based on position cordinates of neighboring nodes is developed for this .The stimulstion results gives a promising result based on the metrics of the studies.
Resumo:
In order to gain insights into events and issues that may cause errors and outages in parts of IP networks, intelligent methods that capture and express causal relationships online (in real-time) are needed. Whereas generalised rule induction has been explored for non-streaming data applications, its application and adaptation on streaming data is mostly undeveloped or based on periodic and ad-hoc training with batch algorithms. Some association rule mining approaches for streaming data do exist, however, they can only express binary causal relationships. This paper presents the ongoing work on Online Generalised Rule Induction (OGRI) in order to create expressive and adaptive rule sets real-time that can be applied to a broad range of applications, including network telemetry data streams.
Resumo:
In the past few years, vehicular ad hoc networks(VANETs) was studied extensively by researchers. VANETs is a type of P2P network, though it has some distinct characters (fast moving, short lived connection etc.). In this paper, we present several limitations of current trust management schemes in VANETs and propose ways to counter them. We first review several trust management techniques in VANETs and argue that the ephemeral nature of VANETs render them useless in practical situations. We identify that the problem of information cascading and oversampling, which commonly arise in social networks, also adversely affects trust management schemes in VANETs. To the best of our knowledge, we are the first to introduce information cascading and oversampling to VANETs. We show that simple voting for decision making leads to oversampling and gives incorrect results in VANETs. To overcome this problem, we propose a novel voting scheme. In our scheme, each vehicle has different voting weight according to its distance from the event. The vehicle which is more closer to the event possesses higher weight. Simulations show that our proposed algorithm performs better than simple voting, increasing the correctness of voting. © 2012 Springer Science + Business Media, LLC.
Resumo:
Several countries have invested in technologies for Smart Grids. Among such protocols designed cover this area, highlights the DNP3 (Distributed Network Protocol version 3). Although the DNP3 be developed for operation over the serial interface, there is a trend in the literature to the use of other interfaces. The Zigbee wireless interface has become more popular in the industrial applications. In order to study the challenges of integrating of these two protocols, this article is presented the analysis of DNP3 protocol stack through state machines The encapsulation of DNP3 messages in P2P (point-to-point) ZigBee Network, may assist in the discovery and solution of failures of availability and security of this integration. The ultimate goal is to merge the features of DNP3 and Zigbee stacks, and display a solution that provides the benefits of wireless environment, without impairment of security required for Smart Grid applications.
Resumo:
La tesi descrive la progettazione e lo sviluppo di un network informativo accessibile come Web App e come app sullo store Android, sviluppato con architettura Client / Server grazie ad un sistema di API sviluppato parzialmente ad-hoc.