928 resultados para Adénovirus recombinant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete sequence of the Synechocystis chromosome has revealed a phytochrome-like sequence that yielded an authentic phytochrome when overexpressed in Escherichia coli. In this paper we describe this recombinant Synechocystis phytochrome in more detail. Islands of strong similarity to plant phytochromes were found throughout the cyanobacterial sequence whereas C-terminal homologies identify it as a likely sensory histidine kinase, a family to which plant phytochromes are related. An ≈300 residue portion that is important for plant phytochrome function is missing from the Synechocystis sequence, immediately in front of the putative kinase region. The recombinant apoprotein is soluble and can easily be purified to homogeneity by affinity chromatography. Phycocyanobilin and similar tetrapyrroles are covalently attached within seconds, an autocatalytic process followed by slow conformational changes culminating in red-absorbing phytochrome formation. Spectral absorbance characteristics are remarkably similar to those of plant phytochromes, although the conformation of the chromophore is likely to be more helical in the Synechocystis phytochrome. According to size-exclusion chromatography the native recombinant apoproteins and holoproteins elute predominantly as 115- and 170-kDa species, respectively. Both tend to form dimers in vitro and aggregate under low salt conditions. Nevertheless, the purity and solubility of the recombinant gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193–7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein’s surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen–deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein’s interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregation of proteins, even under conditions favoring the native state, is a ubiquitous problem in biotechnology and biomedical engineering. Providing a mechanistic basis for the pathways that lead to aggregation should allow development of rational approaches for its prevention. We have chosen recombinant human interferon-γ (rhIFN-γ) as a model protein for a mechanistic study of aggregation. In the presence of 0.9 M guanidinium hydrochloride, rhIFN-γ aggregates with first order kinetics, a process that is inhibited by addition of sucrose. We describe a pathway that accounts for both the observed first-order aggregation of rhIFN-γ and the effect of sucrose. In this pathway, aggregation proceeds through a transient expansion of the native state. Sucrose shifts the equilibrium within the ensemble of rhIFN-γ native conformations to favor the most compact native species over more expanded ones, thus stabilizing rhIFN-γ against aggregation. This phenomenon is attributed to the preferential exclusion of sucrose from the protein surface. In addition, kinetic analysis combined with solution thermodynamics shows that only a small (9%) expansion surface area is needed to form the transient native state that precedes aggregation. The approaches used here link thermodynamics and aggregation kinetics to provide a powerful tool for understanding both the pathway of protein aggregation and the rational use of excipients to inhibit the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core of bluetongue virus (BTV) is a multienzyme complex composed of two major proteins (VP7 and VP3) and three minor proteins (VP1, VP4, and VP6) in addition to the viral genome. The core is transcriptionally active and produces capped mRNA from which all BTV proteins are translated, but the relative role of each core component in the overall reaction process remains unclear. Previously we showed that the 76-kDa VP4 protein possesses guanylyltransferase activity, a necessary part of the RNA capping reaction. Here, through the use of highly purified (>95%) VP4 and synthetic core-like particles containing VP4, we have investigated the extent to which this protein is also responsible for other activities associated with cap formation. We show that VP4 catalyzes the conversion of unmethylated GpppG or in vitro-produced uncapped BTV RNA transcripts to m7GpppGm in the presence of S-adenosyl-l-methionine. Analysis of the methylated products of the reaction by HPLC identified both methyltransferase type 1 and type 2 activities associated with VP4, demonstrating that the complete BTV capping reaction is associated with this one protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our model of the native fatty acid synthase (FAS) depicts it as a dimer of two identical multifunctional proteins (Mr ≈ 272,000) arranged in an antiparallel configuration so that the active Cys-SH of the β-ketoacyl synthase of one subunit (where the acyl group is attached) is juxtaposed within 2 Å of the pantetheinyl-SH of the second subunit (where the malonyl group is bound). This arrangement generates two active centers for fatty acid synthesis and predicts that if we have two appropriate halves of the monomer, we should be able to reconstitute an active fatty acid-synthesizing site. We cloned, expressed, and purified catalytically active thioredoxin (TRX) fusion proteins of the NH2-terminal half of the human FAS subunit protein (TRX-hFAS-dI; residues 1–1,297; Mr ≈ 166) and of the C-terminal half (TRX-hFAS-dII-III; residues 1,296–2,504; Mr ≈ 155). Adding equivalent amounts of TRX-hFAS-dI and TRX-hFAS-dII-III to a reaction mixture containing acetyl-CoA, malonyl-CoA, and NADPH resulted in the synthesis of long-chain fatty acids. The rate of synthesis was dependent upon the presence of both recombinant proteins and reached a constant level when they were present in equivalent amounts, indicating that the reconstitution of an active fatty acid-synthesizing site required the presence of every partial activity associated with the subunit protein. Analyses of the product acids revealed myristate to be the most abundant with small amounts of palmitate and stearate, possibly because of the way the fused recombinant proteins interacted with each other so that the thioesterase hydrolyzed the acyl group in its myristoyl state. The successful reconstitution of the human FAS activity from its domain I and domains II and III fully supports our model for the structure–function relationship of FAS in animal tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO), synthesized from l-arginine by NO synthases (NOS), plays an essential role in the regulation of cerebrovascular tone. Adenoviral vectors have been widely used to transfer recombinant genes to different vascular beds. To determine whether the recombinant endothelial NOS (eNOS) gene can be delivered in vivo to the adventitia of cerebral arteries and functionally expressed, a replication-incompetent adenoviral vector encoding eNOS gene (AdCMVNOS) or β-galactosidase reporter gene (AdCMVLacZ) was injected into canine cerebrospinal fluid (CSF) via the cisterna magna (final viral titer in CSF, 109 pfu/ml). Adventitial transgene expression was demonstrated 24 h later by β-galactosidase histochemistry and quantification, eNOS immunohistochemistry, and Western blot analysis of recombinant eNOS. Electron microscopy immunogold labeling indicated that recombinant eNOS protein was expressed in adventitial fibroblasts. In AdCMVNOS-transduced arteries, basal cGMP production and bradykinin-induced relaxations were significantly augmented when compared with AdCMVLacZ-transduced vessels (P < 0.05). The increased receptor-mediated relaxations and cGMP production were inhibited by eNOS inhibitors. In addition, the increase in cGMP production was reversed in the absence of calcium, suggesting that the increased NO production did not result from inducible NOS expression. The present study demonstrates the successful in vivo transfer and functional expression of recombinant eNOS gene in large cerebral arteries. It also suggests that perivascular eNOS gene delivery via the CSF is a feasible approach that does not require interruption of cerebral blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccines harboring genes that encode functional oncoproteins are intrinsically hazardous, as their application may lead to introduction of these genes into normal cells and thereby to tumorigenesis. On the other hand, oncoproteins are especially attractive targets for immunotherapy of cancer, as their expression is generally required for tumor growth, making the arisal of tumor variants lacking these antigens unlikely. Using murine tumor models, we investigated the efficacy of polyepitope recombinant adenovirus (rAd) vaccines, which encode only the immunogenic T cell epitopes derived from several oncogenes, for the induction of protective anti-tumor immunity. We chose to employ rAd, as these are safe vectors that do not induce the side effects associated with, for example, vaccinia virus vaccines. A single polyepitope rAd was shown to give rise to presentation of both H-2 and human leukocyte antigen-restricted cytotoxic T lymphocyte (CTL) epitopes. Moreover, vaccination with a rAd encoding H-2-restricted CTL epitopes, derived from human adenovirus type 5 early region 1 and human papilloma virus type 16-induced tumors, elicited strong tumor-reactive CTL and protected the vaccinated animals against an otherwise lethal challenge with either of these tumors. The protection induced was superior compared with that obtained by vaccination with irradiated tumor cells. Thus, vaccination with polyepitope rAd is a powerful approach for the induction of protective anti-tumor immunity that allows simultaneous immunization against multiple tumor-associated T cell epitopes, restricted by various major histocompatibility complex haplotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EGFRvIII is a mutant epidermal growth factor receptor found in glioblastoma, and in carcinoma of the breast, ovary, and lung. The mutant receptor has a deletion in its extracellular domain that results in the formation of a new, tumor-specific extracellular sequence. Mice were immunized with a synthetic peptide corresponding to this sequence and purified EGFRvIII. A single chain antibody variable domain (scFv) phage display library of 8 × 106 members was made from the spleen of one immunized mouse. A scFv specific for EGFRvIII was isolated from this library by panning with successively decreasing amounts of synthetic peptide. This was used to make an immunotoxin by fusing the scFv DNA sequence to sequences coding for domains II and III of Pseudomonas exotoxin A. Purified immunotoxin had a Kd of 22 nM for peptide and a Kd of 11 nM for cell-surface EGFRvIII. The immunotoxin was very cytotoxic to cells expressing EGFRvIII, with an IC50 of 1 ng/ml (16 pM) on mouse fibroblasts transfected with EGFRvIII and an IC50 of 7–10 ng/ml (110–160 pM) on transfected glioblastoma cells. There was no cytotoxic activity at 1000 ng/ml on the untransfected parent glioblastoma cell line. The immunotoxin was completely stable upon incubation at 37°C for 24 h in human serum. The combination of good affinity, cytotoxicity and stability make this immunotoxin a candidate for further preclinical evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chimeric Lhcb gene encoding light-harvesting chlorophyll a/b-binding protein (LHCII) was expressed in transgenic tobacco plants. To separate native from recombinant LHCII, the protein was extended by six histidines at its C terminus. Recombinant LHCII was isolated by detergent-mediated monomerization of pure trimers followed by affinity-chromatography on Ni2+-NTA-agarose (NTA is nitrilotriacetic acid). Elution with imidazole yielded recombinant monomers that formed trimers readily after dilution of the detergent without further in vitro manipulations. LHCII subunits showed the typical chlorophyll a/b ratio at all steps of purification indicating no significant loss of pigments. Transgenic tobacco overexpressed amounts of recombinant protein that corresponded to about 0.7% of total LHCII. This yield suggested that expression in planta might be an alternative to the expression of eukaryotic membrane proteins in yeast. Recombinant LHCII was able to form two-dimensional crystals after addition of digalactolipids, which diffracted electrons to 3.6-Å resolution. LHCII carrying a replacement of Arg-21 with Gln accumulated to only 0.004% of total thylakoid proteins. This mutant was monomeric in the photosynthetic membrane probably due to the deletion of the phosphatidylglycerol binding site and was degraded by the plastidic proteolytic system. Exchange of Asn-183 with Leu impaired LHCII biogenesis in a similar way presumably due to the lack of a chlorophyll a binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N terminus of the scrapie isoform of prion protein (PrPSc) can be truncated without loss of scrapie infectivity and, correspondingly, the truncation of the N terminus of the cellular isoform, PrPC, still permits conversion into PrPSc. To assess whether additional segments of the PrP molecule can be deleted, we previously removed regions of putative secondary structure in PrPC; in the present study we found that deletion of each of the four predicted helices prevented PrPSc formation, as did deletion of the stop transfer effector region and the C178A mutation. Removal of a 36-residue loop between helices 2 and 3 did not prevent formation of protease-resistant PrP; the resulting scrapie-like protein, designated PrPSc106, contained 106 residues after cleavage of an N-terminal signal peptide and a C-terminal sequence for glycolipid anchor addition. Addition of the detergent Sarkosyl to cell lysates solubilized PrPSc106, which retained resistance to digestion by proteinase K. These results suggest that all the regions of proposed secondary structure in PrP are required for PrPSc formation, as is the disulfide bond stabilizing helices 3 and 4. The discovery of PrPSc106 should facilitate structural studies of PrPSc, investigations of the mechanism of PrPSc formation, and the production of PrPSc-specific antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During infection of a new host, the first surfaces encountered by herpes simplex viruses are the apical membranes of epithelial cells of mucosal surfaces. These cells are highly polarized, and the protein composition of their apical and basolateral membranes are very different, so that different viral entry pathways have evolved for each surface. To determine whether the viral glycoprotein G (gG) is specifically required for efficient infection of a particular surface of polarized cells, apical and basal surfaces were infected with wild-type virus or a gG deletion mutant. After infection of polarized cells in culture, the gG− virus was deficient in infection of apical surfaces but was able to infect cells through basal membranes, replicate, and spread into surrounding cells. The gG-dependent step in apical infection was a stage beyond attachment. After in vivo infection of apical surfaces of epithelial cells of nonscarified mouse corneas, infection by glycoprotein C− or gG− virus was considerably reduced as compared with that observed after infection with wild-type virus. In contrast, when corneas were scarified, allowing virus access to other cell surfaces, the gG and glycoprotein C deletion mutants infected eyes as efficiently as wild-type viruses. A secondary mutation allowing infection of apical surfaces by gG− virus arose readily during passage of the virus in nonpolarized cells, indicating that either the gG-dependent step of apical infection can be bypassed or that another viral protein can acquire the same function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain of the self-pollinating diploid barley species offers two modes of producing recombinant enzymes or other proteins. One uses the promoters of genes with aleurone-specific expression during germination and the signal peptide code for export of the protein into the endosperm. The other uses promoters of the structural genes for storage proteins deposited in the developing endosperm. Production of a protein-engineered thermotolerant (1, 3–1, 4)-β-glucanase with the D hordein gene (Hor3–1) promoter during endosperm development was analyzed in transgenic plants with four different constructs. High expression of the enzyme and its activity in the endosperm of the mature grain required codon optimization to a C+G content of 63% and synthesis as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeting into the storage vacuoles. Synthesis of the recombinant enzyme in the aleurone of germinating transgenic grain with an α-amylase promoter and the code for the export signal peptide yielded ≈1 μg⋅mg−1 soluble protein, whereas 54 μg⋅mg−1 soluble protein was produced on average in the maturing grain of 10 transgenic lines with the vector containing the gene for the (1, 3–1, 4)-β-glucanase under the control of the Hor3–1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA vaccines express antigens intracellularly and effectively induce cellular immune responses. Because only chimpanzees can be used to model human hepatitis C virus (HCV) infections, we developed a small-animal model using HLA-A2.1-transgenic mice to test induction of HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) and protection against recombinant vaccinia expressing HCV-core. A plasmid encoding the HCV-core antigen induced CD8+ CTLs specific for three conserved endogenously expressed core peptides presented by human HLA-A2.1. When challenged, DNA-immunized mice showed a substantial (5–12 log10) reduction in vaccinia virus titer compared with mock-immunized controls. This protection, lasting at least 14 mo, was shown to be mediated by CD8+ cells. Thus, a DNA vaccine expressing HCV-core is a potential candidate for a prophylactic vaccine for HLA-A2.1+ humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenylketonuria (PKU), with its associated hyperphenylalaninemia (HPA) and mental retardation, is a classic genetic disease and the first to have an identified chemical cause of impaired cognitive development. Treatment from birth with a low phenylalanine diet largely prevents the deviant cognitive phenotype by ameliorating HPA and is recognized as one of the first effective treatments of a genetic disease. However, compliance with dietary treatment is difficult and when it is for life, as now recommended by an internationally used set of guidelines, is probably unrealistic. Herein we describe experiments on a mouse model using another modality for treatment of PKU compatible with better compliance using ancillary phenylalanine ammonia lyase (PAL, EC 4.3.1.5) to degrade phenylalanine, the harmful nutrient in PKU; in this treatment, PAL acts as a substitute for the enzyme phenylalanine monooxygenase (EC 1.14.16.1), which is deficient in PKU. PAL, a robust enzyme without need for a cofactor, converts phenylalanine to trans-cinnamic acid, a harmless metabolite. We describe (i) an efficient recombinant approach to produce PAL enzyme, (ii) testing of PAL in orthologous N-ethyl-N′-nitrosourea (ENU) mutant mouse strains with HPA, and (iii) proofs of principle (PAL reduces HPA)—both pharmacologic (with a clear dose–response effect vs. HPA after PAL injection) and physiologic (protected enteral PAL is significantly effective vs. HPA). These findings open another way to facilitate treatment of this classic genetic disease.