961 resultados para Actuation control technique
Resumo:
A new approach, the four-window technique, was developed to measure optical phase-space-time-frequency tomography (OPSTFT). The four-window technique is based on balanced heterodyne detection with two local oscillator (LO) fields. This technique can provide independent control of position, momentum, time and frequency resolution. The OPSTFT is a Wigner distribution function of two independent Fourier transform pairs, phase-space and time-frequency. The OPSTFT can be applied for early disease detection.
Resumo:
Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.
Resumo:
The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.
Resumo:
AIM: To present a novel, minimally invasive strabismus surgery (MISS) technique for rectus muscle operations. METHODS: In this prospective study with a non-concurrent, retrospective comparison group, the first 20 consecutive patients treated with MISS were matched by age, diagnosis and muscles operated on, with 20 patients with a limbal opening operated on by the same surgeon at Kantonsspital, St Gallen, Switzerland. A total of 39 muscles were operated on. MISS is performed by applying two small radial cuts along the superior and inferior muscle margin. After muscle separation from surrounding tissue, a recession or plication is performed through the resulting tunnel. Alignment, binocular single vision, variations in vision, refraction, and number and types of complications during the first 6 postoperative months were registered. RESULTS: Visual acuity decreased at postoperative day 1 in both groups. The decrease was less pronounced in the group operated on with MISS (difference of decrease 0.14 logMAR, p<0.001). An abnormal lid swelling at day 1 was more frequent in the control group (21%, 95% confidence interval (CI) 9% to 41%, 5/24 v 0%, 95% CI 0 to 13%, 0/25, p<0.05). No significant difference was found for final alignment, binocular single vision, other visual acuities, refractive changes or complications (allergic reactions, dellen formation, abnormal conjuctival findings). A conversion to a limbal opening was necessary in 5% (95% CI 2% to 17%, 2/39) of muscles. CONCLUSIONS: This study shows that this new, small-incision, minimal dissection technique is feasible. The MISS technique seems to be superior in the direct postoperative period as better visual acuities and less lid swelling were observed. Long-term results did not differ in the two groups.
Resumo:
In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.
Resumo:
Free-radical retrograde-precipitation polymerization, FRRPP in short, is a novel polymerization process discovered by Dr. Gerard Caneba in the late 1980s. The current study is aimed at gaining a better understanding of the reaction mechanism of the FRRPP and its thermodynamically-driven features that are predominant in controlling the chain reaction. A previously developed mathematical model to represent free radical polymerization kinetics was used to simulate a classic bulk polymerization system from the literature. Unlike other existing models, such a sparse-matrix-based representation allows one to explicitly accommodate the chain length dependent kinetic parameters. Extrapolating from the past results, mixing was experimentally shown to be exerting a significant influence on reaction control in FRRPP systems. Mixing alone drives the otherwise severely diffusion-controlled reaction propagation in phase-separated polymer domains. Therefore, in a quiescent system, in the absence of mixing, it is possible to retard the growth of phase-separated domains, thus producing isolated polymer nanoparticles (globules). Such a diffusion-controlled, self-limiting phenomenon of chain growth was also observed using time-resolved small angle x-ray scattering studies of reaction kinetics in quiescent systems of FRRPP. Combining the concept of self-limiting chain growth in quiescent FRRPP systems with spatioselective reaction initiation of lithography, microgel structures were synthesized in a single step, without the use of molds or additives. Hard x-rays from the bending magnet radiation of a synchrotron were used as an initiation source, instead of the more statistally-oriented chemical initiators. Such a spatially-defined reaction was shown to be self-limiting to the irradiated regions following a polymerization-induced self-assembly phenomenon. The pattern transfer aspects of this technique were, therefore, studied in the FRRP polymerization of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), a thermoreversible and ionic hydrogel, respectively. Reaction temperature increases the contrast between the exposed and unexposed zones of the formed microgels, while the irradiation dose is directly proportional to the extent of phase separation. The response of Poly (NIPAm) microgels prepared from the technique described in this study was also characterized by small angle neutron scattering.
Resumo:
Osteotomies of the proximal femur for hip joint conditions are normally done at the intertrochanteric or subtrochanteric level. Intra-articular osteotomies would be more direct and therefore allow a more powerful correction with no or very little undesired side correction. However, concerns about the risk of vascular damage and osteonecrosis of the femoral head have so far basically excluded this technique from practical use. Based on detailed knowledge of the vascular anatomy of the proximal femur, an approach to safely dislocate the femoral head has been described and successfully performed. Experience as well as further studies of femoral head perfusion allowed a substantial extension of this approach, with subperiosteal exposure of the circumference of the femoral neck with constant intraoperative control of the blood supply to the head. Using the extended retinacular soft-tissue flap, four surgical techniques (relative neck lengthening, subcapital realignment in slipped capital femoral epiphysis, true femoral neck osteotomy, and femoral head reduction osteotomy) evolved or became safer with respect to perfusion of the femoral head. The extended retinacular soft-tissue flap offers the technical and biologic possibility for a new class of intra articular procedures. Although meticulous execution of the surgical steps is important, the procedures have a high level of safety for femoral head perfusion.
Resumo:
BACKGROUND: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e.g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. RESULTS: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/~vpopovic/research/ CONCLUSION: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.
Resumo:
BACKGROUND A newly developed collagen matrix (CM) of porcine origin has been shown to represent a potential alternative to palatal connective tissue grafts (CTG) for the treatment of single Miller Class I and II gingival recessions when used in conjunction with a coronally advanced flap (CAF). However, at present it remains unknown to what extent CM may represent a valuable alternative to CTG in the treatment of Miller Class I and II multiple adjacent gingival recessions (MAGR). The aim of this study was to compare the clinical outcomes following treatment of Miller Class I and II MAGR using the modified coronally advanced tunnel technique (MCAT) in conjunction with either CM or CTG. METHODS Twenty-two patients with a total of 156 Miller Class I and II gingival recessions were included in this study. Recessions were randomly treated according to a split-mouth design by means of MCAT + CM (test) or MCAT + CTG (control). The following measurements were recorded at baseline (i.e. prior to surgery) and at 12 months: Gingival Recession Depth (GRD), Probing Pocket Depth (PD), Clinical Attachment Level (CAL), Keratinized Tissue Width (KTW), Gingival Recession Width (GRW) and Gingival Thickness (GT). GT was measured 3-mm apical to the gingival margin. Patient acceptance was recorded using a Visual Analogue Scale (VAS). The primary outcome variable was Complete Root Coverage (CRC), secondary outcomes were Mean Root Coverage (MRC), change in KTW, GT, patient acceptance and duration of surgery. RESULTS Healing was uneventful in both groups. No adverse reactions at any of the sites were observed. At 12 months, both treatments resulted in statistically significant improvements of CRC, MRC, KTW and GT compared with baseline (p < 0.05). CRC was found at 42% of test sites and at 85% of control sites respectively (p < 0.05). MRC measured 71 ± 21% mm at test sites versus 90 ± 18% mm at control sites (p < 0.05). Mean KTW measured 2.4 ± 0.7 mm at test sites versus 2.7 ± 0.8 mm at control sites (p > 0.05). At test sites, GT values changed from 0.8 ± 0.2 to 1.0 ± 0.3 mm, and at control sites from 0.8 ± 0.3 to 1.3 ± 0.4 mm (p < 0.05). Duration of surgery and patient morbidity was statistically significantly lower in the test compared with the control group respectively (p < 0.05). CONCLUSIONS The present findings indicate that the use of CM may represent an alternative to CTG by reducing surgical time and patient morbidity, but yielded lower CRC than CTG in the treatment of Miller Class I and II MAGR when used in conjunction with MCAT.
Resumo:
PURPOSE Extended grafting procedures in atrophic ridges are invasive and time-consuming and increase cost and patient morbidity. Therefore, ridge-splitting techniques have been suggested to enlarge alveolar crests. The aim of this cohort study was to report techniques and radiographic outcomes of implants placed simultaneously with a piezoelectric alveolar ridge-splitting technique (RST). Peri-implant bone-level changes (ΔIBL) of implants placed with (study group, SG) or without RST (control group, CG) were compared. MATERIALS AND METHODS Two cohorts (seven patients in each) were matched regarding implant type, position, and number; superstructure type; age; and gender and received 17 implants each. Crestal implant bone level (IBL) was measured at surgery (T0), loading (T1), and 1 year (T2) and 2 years after loading (T3). For all implants, ΔIBL values were determined from radiographs. Differences in ΔIBL between SG and CG were analyzed statistically (Mann-Whitney U test). Bone width was assessed intraoperatively, and vertical bone mapping was performed at T0, T1, and T3. RESULTS After a mean observation period of 27.4 months after surgery, the implant survival rate was 100%. Mean ΔIBL was -1.68 ± 0.90 mm for SG and -1.04 ± 0.78 mm for CG (P = .022). Increased ΔIBL in SG versus CG occurred mainly until T2. Between T2 and T3, ΔIBL was limited (-0.11 ± 1.20 mm for SG and -0.05 ± 0.16 mm for CG; P = .546). Median bone width increased intraoperatively by 4.7 mm. CONCLUSIONS Within the limitations of this study, it can be suggested that RST is a well-functioning one-stage alternative to extended grafting procedures if the ridge shows adequate height. ΔIBL values indicated that implants with RST may fulfill accepted implant success criteria. However, during healing and the first year of loading, increased IBL alterations must be anticipated.
Resumo:
Introduction Musicians often suffer injuries related to their music playing. Therefore, some use Alexander Technique (AT), a mental-physical method that facilitates to release unnecessary muscle tension and to re-educate non-beneficial movement patterns through enhanced kinaesthetic awareness. According to a recent review AT may be effective for chronic back pain [1]. This review aimed to evaluate the evidence for the effectiveness of AT lessons on music performance and musicians’ health and well-being. Methods The following electronic databases were searched up to July 2012 for relevant literature: PUBMED, Google Scholar, CINAHL and EMBASE. The search criteria were "Alexander technique" AND "music*" [all fields]. References were searched, and experts and societies of AT or musicians' medicine contacted for further publications. Results 100 studies were identified. 24 studies were included for further analysis, 5 of which were randomised controlled trials (RCTs), 5 controlled but not randomised (CTs), 5 without control group, 2 mixed methods (RCT and case studies), and 7 surveys. 13 to 72 musicians participated per RCT. In 5 RCTs AT groups received between 12 and 20 one-to-one lessons. In 4 RCTs control groups received no interventions. Primary outcomes were performance anxiety, music performance, "use" as well as respiratory function and pain. Performance anxiety decreased by AT in 3 of 4 RCTs and in 3 of 3 CTs. Music performance was improved by AT in 1 RCT, yet in 2 RCTs comparing neurofeedback (NF) to AT, only NF showed improvements. Discussion and Conclusion To investigate the effectiveness of AT in musicians a variety of study designs and outcome measures have been used. Evidence from RCTs suggests that AT may improve performance anxiety in musicians. Effects on music performance, body use and respiratory function yet remain inconsistent. Future trials with scientifically sound study designs are warranted to further and more reliably explore the potential of AT as a relatively low cost and low risk method in the interest of musicians. References [1] Woodman JP, Moore NR. Evidence for the effectiveness of Alexander Technique lessons in medical and health-related conditions: a systematic review. Int J Clin Pract 2012;66(1):98-112.
Resumo:
Purpose Musicians often suffer injuries related to their music playing. Therefore, some use the Alexander Technique (AT), a psycho-physical method that helps to release unnecessary muscle tension and re-educates non-beneficial movement patterns through enhanced kinaesthetic awareness. According to a recent review AT may be effective for chronic back pain. This review aimed to evaluate the evidence for the effectiveness of AT lessons on music performance and musicians’ health and well-being. Methods The following electronic databases were searched up to July 2012 for relevant literature: PUBMED, Google Scholar, CINAHL and EMBASE. The search criteria were "Alexander technique" AND "music*" [all fields]. References were searched, and experts and societies of AT or musicians' medicine contacted for further publications. Results 100 studies were identified. 35 studies were included for further analysis, 5 of which were randomised controlled trials (RCTs), 5 controlled but not randomised, 5 not controlled, 5 qualitative case studies, 2 mixed-models (RCT and case studies), 7 surveys, 4 qualitative case reports and 2 unpublished pilot studies. 13 to 72 musicians participated per RCT. In 5 RCTs AT groups received between 12 and 20 one-to-one lessons. In 4 RCTs control groups received no interventions. Primary outcomes were performance anxiety, performance, "use" as well as respiratory function and pain. Performance anxiety decreased by AT in 3 of 4 RCTs. Music performance was improved by AT in 1 RCT, yet in 2 RCTs comparing neurofeedback (NF) to AT, only NF showed improvements. Conclusions To investigate the effectiveness of AT in musicians a variety of study designs and outcome measures have been used. Evidence from RCTs suggests that AT may improve performance anxiety in musicians. Effects on music performance, body use and respiratory function yet remain inconsistent. Future trials with well-established study designs are warranted to further and more reliably explore the potential of AT as a relatively low cost and low risk method in the interest of musicians.
Resumo:
Since October 2011, the enzymatic lysis of Dupuytren's cord was introduced in Switzerland (Xiapex(®), Auxilium Pharmaceuticals, Pfizer). Here we present our first university experience and underline the major role of ultrasound during the injection. Between December 2011 and February 2013, 52 injections were performed to eliminate 43 Dupuytren's cords in 33 patients. The mean age of the patients was 64.4 ± 8.5 years. Complications were documented for each patient. Before, directly after and after a minimum of 6 months post-injection, the contracture of the treated joint was measured with use of a goniometer. The DASH score was evaluated after a minimum of 6 months and the patients were asked to subjectively evaluate the outcome of the treatment (very good, good, mild, poor) and whether they would reiterate it if necessary. Four skin defects, one lymphangitis, and one CRPS were responsible for a complication rate of 18%. There was no infection and no tendon rupture in the series. The mean MCP joint contracture was respectively 36.8 ± 27.4°, 3.5 ± 7.8° (gain of mobility compared to the preoperative situation 33.3°, P<0.001), and 8.4 ± 13.9° (gain 28.4°, P<0.001) respectively before, just after and at the long-term clinical control. The mean PIP joint contracture was respectively 36.5 ± 29.1°, 5.9 ± 6.7° (gain 30.6°, P<0.001), and 15.1 ± 13.8° (gain 21.4°, P<0.001) respectively before injection, just after and at the long-term clinical control. The DASH score decreased from 24 ± 14 to 7 ± 9 (P<0.001). Eighty-one per cent of the patients were satisfied or very satisfied of the treatment. All but two would reiterate the treatment if necessary. Ultrasound is able to target the injection of collagenase in order to reduce complications. The short-term results of this non-invasive therapy are very promising however comparison with conventional procedures is difficult as the long-term results are lacking.
Resumo:
The capacity to inhibit inappropriate responses is crucial for goal-directed behavior. Inhibiting such responses seems to come more easily to some of us than others, however. From where do these individual differences originate? Here, we measured 263 participants' neural baseline activation using resting electroencephalogram. Then, we used this stable neural marker to predict a reliable electrophysiological index of response inhibition capacity in the cued Continuous Performance Test, the NoGo-Anteriorization (NGA). Using a source-localization technique, we found that resting delta, theta, and alpha1 activity in the left middle frontal gyrus and resting alpha1 activity in the right inferior frontal gyrus were negatively correlated with the NGA. As a larger NGA is thought to represent better response inhibition capacity, our findings demonstrate that lower levels of resting slow-wave oscillations in the lateral prefrontal cortex, bilaterally, are associated with a better response inhibition capacity.