942 resultados para Abiotic stress tolerance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexokinase (HXK; EC 2.7.1.1) regulates carbohydrate entry into glycolysis and is known to be a sensor for sugar-responsive gene expression. The effect of abiotic stresses on HXK activity was determined in seedlings of the flood-tolerant plant Echinochloa phyllopogon (Stev.) Koss and the flood-intolerant plant Echinochloa crus-pavonis (H.B.K.) Schult grown aerobically for 5 d before being subjected to anaerobic, chilling, heat, or salt stress. HXK activity was stimulated in shoots of E. phyllopogon only by anaerobic stress. HXK activity was only transiently elevated in E. crus-pavonis shoots during anaerobiosis. In roots of both species, anoxia and chilling stimulated HXK activity. Thus, HXK is not a general stress protein but is specifically induced by anoxia and chilling in E. phyllopogon and E. crus-pavonis. In both species HXK exhibited an optimum pH between 8.5 and 9.0, but the range was extended to pH 7.0 in air-grown E. phyllopogon to 6.5 in N2-grown E. phyllopogon. At physiologically relevant pHs (6.8 and 7.3, N2 and O2 conditions, respectively), N2-grown seedlings retained greater HXK activity at the lower pH. The pH response suggests that in N2-grown seedlings HXK can function in a more acidic environment and that a specific isozyme may be important for regulating glycolytic activity during anaerobic metabolism in E. phyllopogon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of the sucrose synthase (SuSy) gene (SuSy) by low O2, low temperature, and limiting carbohydrate supply suggested a role in carbohydrate metabolism under stress conditions. The isolation of a maize (Zea mays L.) line mutant for the two known SuSy genes but functionally normal showed that SuSy activity might not be required for aerobic growth and allowed the possibility of investigating its importance during anaerobic stress. As assessed by root elongation after return to air, hypoxic pretreatment improved anoxic tolerance, in correlation with the number of SuSy genes and the level of SuSy expression. Furthermore, root death in double-mutant seedlings during anoxic incubation could be attributed to the impaired utilization of sucrose (Suc). Collectively, these data provide unequivocal evidence that Suc is the principal C source and that SuSy is the main enzyme active in Suc breakdown in roots of maize seedlings deprived of O2. In this situation, SuSy plays a critical role in anoxic tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolated immature maize (Zea mays L.) embryos have been shown to acquire tolerance to rapid drying between 22 and 25 d after pollination (DAP) and to slow drying from 18 DAP onward. To investigate adaptations in protein profile in association with the acquisition of desiccation tolerance in isolated, immature maize embryos, we applied in situ Fourier transform infrared microspectroscopy. In fresh, viable, 20- and 25-DAP embryo axes, the shapes of the different amide-I bands were identical, and this was maintained after flash drying. On rapid drying, the 20-DAP axes had a reduced relative proportion of α-helical protein structure and lost viability. Rapidly dried 25-DAP embryos germinated (74%) and had a protein profile similar to the fresh control axes. On slow drying, the α-helical contribution in both the 20- and 25-DAP embryo axes increased compared with that in the fresh control axes, and survival of desiccation was high. The protein profile in dry, mature axes resembled that after slow drying of the immature axes. Rapid drying resulted in an almost complete loss of membrane integrity in the 20-DAP embryo axes and much less so in the 25-DAP axes. After slow drying, low plasma membrane permeability ensued in both the 20- and 25-DAP axes. We conclude that slow drying of excised, immature embryos leads to an increased proportion of α-helical protein structures in their axes, which coincides with additional tolerance of desiccation stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of water stress duration and intensity on gas exchange and leaf water potential were investigated in 7-month-old seedlings of a humid coastal provenance (Gympie) and a dry inland (Hungry Hills) provenance of E. cloeziana F. Muell. and in a dry inland (Chinchilla) provenance of E. argophloia Blakely supplied with 100% (T-100), 70% (T-70), 50% (T-50) of their water requirements, or were watered only after they were wilted at dawn (T-0). Seedlings of E. argophloia had the highest midday net photosynthetic rate (A), stomata] conductance (g(s)), stomatal density and predawn leaf water potential (Psi(pd)) in all treatments. The E. cloeziana provenances did not differ in these attributes. The T-70 and T-50 treatments caused reductions in A of 30% in E. argophloia, and 55% in the E. cloeziana provenances. Under the T-0 treatment, E. argophloia maintained higher rates of gas exchange at all levels of water stress than E. cloeziana provenances. The estimates of Psi(pd) and midday water potential (Psi(md)) at which plants remained wilted overnight were respectively: -2.7 and -4.1 MPa for E. cloeziana (humid), -2.8 and -4.0 MPa for E. cloeziana (dry) and, -3.7 and -4.9 MPa for E. argophloia. Following stress relief, both A and g(s) recovered more quickly in E. argophloia and in the dry provenance of E. cloeziana than in the humid provenance. We conclude that E. argophloia is more drought tolerant and has a potential for cultivation in the humid and semi humid climates, whilst E. cloeziana has greater potential in the humid subtropical climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. Scope This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from > 0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. Conclusion For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although insecure attachment has been associated with a range of variables linked with problematic adjustment to chronic pain, the causal direction of these relationships remains unclear. Adult attachment style is, theoretically, developmentally antecedent to cognitions, emotions and behaviours (and might therefore be expected to contribute to maladjustment). It can also be argued, however, that the experience of chronic pain increases attachment insecurity. This project examined this issue by determining associations between adult attachment characteristics, collected prior to an acute (coldpressor) pain experience, and a range of emotional, cognitive, pain tolerance, intensity and threshold variables collected during and after the coldpressor task. A convenience sample of 58 participants with no history of chronic pain was recruited. Results demonstrated that attachment anxiety was associated with lower pain thresholds; more stress, depression, and catastrophizing; diminished perceptions of control over pain; and diminished ability to decrease pain. Conversely, secure attachment was linked with lower levels of depression and catastrophizing, and more control over pain. Of particular interest were findings that attachment style moderated the effects of pain intensity on the tendency to catastrophize, such that insecurely attached individuals were more likely to catastrophize when reporting high pain intensity. This is the first study to link attachment with perceptions of pain in a pain-free sample. These findings cast anxious attachment as a vulnerability factor for chronic pain following acute episodes of pain, while secure attachment may provide more resilience. (c) 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Cambodia, grain yield in rainfed lowland rice is often affected by drought during late vegetative or reproductive stage. Several experiments were conducted to quantify the contribution of potential yield, drought tolerance and drought escape mechanisms to yield under water stress conditions. In total nine pairs of well irrigated and simulated drought (by draining water) experiments were conducted. Potential yield was obtained under irrigation. Grain yields and flowering dates were recorded in 15 varieties. Drought tolerance was quantified by using drought response index (DRI), which is grain yield under drought adjusted for potential yield and flowering date of the variety. Drought escape is expressed as days to flower under drought conditions. Mean yield reduction due to drought of nine experiments was 27 % (range 12-44). The relative contribution of yield potential, flowering date and DRI to observe yield under drought were evaluated by multiple regression for each experiment. Potential yield accounted for 54% (with a range of 10-80) of the variation in actual yield under drought. This was followed by DRI and flowering date with 34 (with a range of 0-60) and 12 (with a range of 0-30) of the contribution, respectively. It is concluded that selecting for drought tolerance as well as for high yield potential would be important in developing cultivars for rainfed lowlands in Cambodia. Although flowering dates are important for drought escape, it had a small contribution probably because drought developed slowly in these experiments in Cambodia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The Comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fish were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegates and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demise of reef-building corals potentially lies on the horizon, given ongoing climate change amid other anthropogenic environmental stressors. If corals cannot acclimatize or adapt to changing conditions, dramatic declines in the extent and health of the living reefs are expected within the next half century. The primary and proximal global threat to corals is climate change. Reef-building corals are dependent upon a nutritional symbiosis with photosynthetic dinoflagellates belonging to the group Symbiodinium. . The symbiosis between the cnidarian host and algal partner is a stress-sensitive relationship; temperatures just 1°C above normal thermal maxima can result in the breakdown of the symbiosis, resulting in coral bleaching (the loss of Symbiodinium and/or associated photopigments) and ultimately, colony death. As ocean temperatures continue to rise, corals will either acclimatize or adapt to changing conditions, or will perish. By experimentally preconditioning the coral Acropora millepora via sublethal heat treatment, the coral acquired thermal tolerance, resisting bleaching during subsequent hyperthermal stress. The complex nature of the coral holobiont translates to multiple possible explanations for acclimatization: acquired thermal tolerance could potentially originate from the host itself, the Symbiodinium, or from the bacterial community associated with the coral. By examining the type of in hospite Symbiodinium and the bacterial community prior acclimation and after thermal challenge, it is shown that short-term acclimatization is not due to a distinct change in the dinoflagellate or prokaryote community. Though the microbial partnerships remain without considerable flux in preconditioned corals, the host transcriptome is dynamic. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments, showing a modulated transcriptomic response to stress. Additionally several genes were upregulated in association with thermal tolerance, including antiapoptotic genes, lectins, and oxidative stress response genes. Upstream of two of these thermal tolerance genes, inhibitor of NFκB and mannose-binding lectin, DNA polymorphisms were identified which vary significantly between the northern and southern Great Barrier Reef. The impact of these mutations in putative promoter regions remains to be seen, but variation across thermally-disparate geography serves to generate hypotheses regarding the role of regulatory element evolution in a coral adaptation context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.