669 resultados para ALUMINUM-ALLOY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns.Materials and Methods: Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05).Results: Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P < 0.05).Conclusions: All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage. (Implant Dent 2012;21:46-50)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. This study was undertaken to evaluate the shear bond strength of four materials used as aesthetic material bonded to Ni-Cr alloy.Methods. Sixty-eight alloy discs were prepared and divided equally into four groups, and received four treatments for veneering: conventional feldspathic porcelain (Noritake EX-3) and three light-cured prosthodontic composite resins (Artglass, Solidex and Targis). The aesthetic materials were applied after metal structure conditioning in accordance with the manufacturers' recommendations. The specimens were stored in distilled water at 37 degreesC for 7 days. A universal testing machine was used to measure the shear bond strength of the specimens at a cross head speed of 0.5 mm/min. Fractured specimens were examined by using both optical and scanning electron microscope.Results. The analysis of variance and Tukey's test showed that the strongest mean shear bond was obtained with Noritake EX-3 (mean shear bond strength 42.90 +/- 7.82 MPa). For composites, the highest mean shear bond strength was observed for Targis (12.30 +/- 1.57 MPa); followed by Solidex (11.94 +/- 1.04 MPa) and Artglass (10.04 +/- 0.75 MPa). Optical analysis of the fractured surf aces indicated that for Targis and Noritake EX-3 all failures were a mixture of both cohesive and adhesive patterns. As for Artglass and Solidex, the fractures were mainly adhesive in nature.Conclusions. The Solidex system was equivalent to the Targis system in bond strength and exhibited greater strength than the Artglass system. The porcelain fused-to-metal showed considerably higher shear bond strength than the three metal-resin bonding techniques. (C) 2003 Elsevier B.V. Ltd. Ali rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Method and Materials: Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-mu m aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 10x magnification. Results: the G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. Conclusion: While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to analyse the average depth of the microporosity of a nickel-chromium (Ni-Cr) system alloy (Verabond II). The metal surface was subject to one of the following surface treatment: (i) Electrolytic etching in nitric acid 0.5 N at a current density of 250 mA cm(-2) ; (ii) chemical etching with CG-Etch etchant; and (iii) Sandblasting with alumina particles 50 mum. Half of the samples were polished before the surface treatments. The depth of porosity was measured through photomicrographs (500x) with a profilometer, and the data were statistically analysed using an analysis of variance (anova) followed by Tukey's test. The conclusions were (i) Differents surface treatment of the Ni-Cr system alloy lead to different depths of microporosity; (ii) the greatest depth of porosity was observed in non-polished alloy; (iii) the greatest and identical depth of microporosity was observed following electrolytic etching and chemical etching; (iv) the least and identical depth of microporosity was observed with chemical etching and sandblasting with alumina particles 50 mum, and (v) Chemical etching showed an intermediary depth.