998 resultados para 75-530
Resumo:
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.
Resumo:
Abstract. The 74 (75) ka Toba eruption in Sumatra, Indonesia, is considered to be one of the largest volcanic events during the Quaternary. Tephra from the Toba eruption has been found in many terrestrial and marine sedimentary deposits, and acidity peaks related to the eruption have been used to synchronize ice core records from Greenland and Antarctica. Seismic profiles and sedimentological data from Lake Prespa on the Balkan Peninsula, SE Europe, indicate a lake level lowstand at 73.6±7.7 ka based on ESR dating of shells. Tephrostratigraphy, radiocarbon dating and tuning of the total organic carbon content with the NGRIP isotope record, corroborate that the lake level lowstand was a short-term event superimposed on the general cooling trend at the end of MIS 5, most likely at the onset of the Greenland Stadial GS- 20. Acknowledging that tectonic events or karst processes could have triggered this lake level lowstand, the chronological correspondence between the lowstand and the Toba eruption is intriguing. Therefore a Toba-driven short-term shift to aridity in the Balkan region, leading to lake level changes and triggering spatial expansion events in one of the lake’s most abundant benthic species, the carino mussel Dreissena presbensis, cannot be excluded.
Resumo:
The ancient southern highlands on Mars (~3.5 Gyr old) contain > 600 regions that display spectral evidence in the infrared for the presence of chloride-bearing materials. Many of these locations were previously reported to display polygonal cracking patterns. We studied more than 80 of the chloride-bearing terrains using high-resolution (0.25-0.5 m/pixel) images, as well as near-infrared spectral data, to characterize the surface textures and the associated cracking patterns and mineralogies. Our study indicates that ~75% of the studied locations display polygonal cracks that resemble desiccation cracks, while some resemble salt expansion/thrust polygons. Furthermore, we detect, spectrally, the presence of smectites in association with ~30% of the studied fractured terrains. We note that smectites are a special class of swelling clay minerals that can induce formation of large desiccation cracks. As such, we suggest that the cracking patterns are indicative of the presence of smectite phyllosilicates even in the absence of spectral confirmation. Our results suggest that many chloride-bearing terrains have a lacustrine origin and a geologic setting similar to playas on Earth. Such locations would have contained ephemeral lakes that may have undergone repeated cycles of desiccation and recharging by a near-surface fluctuating water table in order to account for the salt-phyllosilicates associations. These results have notable implications for the ancient hydrology of Mars. We propose that the morphologies and sizes of the polygonal cracks can be used as paleoenvironmental, as well as lithological, indicators that could be helpful in planning future missions.
Resumo:
Detailed insight into natural variations of the greenhouse gas nitrous oxide (N2O) in response to changes in the Earth's climate system is provided by new measurements along the ice core of the North Greenland Ice Core Project (NGRIP). The presented record reaches from the early Holocene back into the previous interglacial with a mean time resolution of about 75 years. Between 11 and 120 kyr BP, atmospheric N2O concentrations react substantially to the last glacial-interglacial transition (Termination 1) and millennial time scale climate variations of the last glacial period. For long-lasting Dansgaard/Oeschger (DO) events, the N2O increase precedes Greenland temperature change by several hundred years with an increase rate of about 0.8-1.3 ppbv/century, which accelerates to about 3.8-10.7 ppbv/century at the time of the rapid warming in Greenland. Within each bundle of DO events, the new record further reveals particularly low N2O concentrations at the approximate time of Heinrich events. This suggests that the response of marine and/or terrestrial N2O emissions on a global scale are different for stadials with and without Heinrich events.
Resumo:
Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.
Resumo:
The ATLAS detector at the Large Hadron Collider is used to search for excited electrons and excited muons in the channel pp -> ll* -> ll gamma, assuming that excited leptons are produced via contact interactions. The analysis is based on 13 fb(-1) of pp collisions at a centre-of-mass energy of 8 TeV. No evidence for excited leptons is found, and a limit is set at the 95% credibility level on the cross section times branching ratio as a function of the excited-lepton mass m(l*). For m(l*) >= 0.8 TeV, the respective upper limits on sigma B(l(*) -> l gamma) are 0.75 and 0.90 fb for the e* and mu* searches. Limits on sigma B are converted into lower bounds on the compositeness scale 3. In the special case where Lambda = m(l*), excited-electron and excited-muon masses below 2.2 TeV are excluded.
Resumo:
The response of liquid xenon to low-energy electronic recoils is relevant in the search for dark-matter candidates which interact predominantly with atomic electrons in the medium, such as axions or axionlike particles, as opposed to weakly interacting massive particles which are predicted to scatter with atomic nuclei. Recently, liquid-xenon scintillation light has been observed from electronic recoils down to 2.1 keV, but without applied electric fields that are used in most xenon dark-matter searches. Applied electric fields can reduce the scintillation yield by hindering the electron-ion recombination process that produces most of the scintillation photons. We present new results of liquid xenon's scintillation emission in response to electronic recoils as low as 1.5 keV, with and without an applied electric field. At zero field, a reduced scintillation output per unit deposited energy is observed below 10 keV, dropping to nearly 40% of its value at higher energies. With an applied electric field of 450 V/cm, we observe a reduction of the scintillation output to about 75% relative to the value at zero field. We see no significant energy dependence of this value between 1.5 and 7.8 keV. With these results, we estimate the electronic-recoil energy thresholds of ZEPLIN-III, XENON10, XENON100, and XMASS to be 2.8, 2.5, 2.3, and 1.1 keV, respectively, validating their excellent sensitivity to low-energy electronic recoils.
Resumo:
The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleoceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143Nd, and 144Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as Nd in good agreement with observations. Nd covaries with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and Nd. Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux. In contrast, an adequate representation of Nd sources and sinks is crucial to simulate Nd concentrations and Nd consistent with observations. The good agreement of our results with observations paves the way for the evaluation of the paleoceanographic potential of Nd in further model studies.
Resumo:
In the range of temperatures reached in future heavy ion collision experiments, hadronic pair annihilations and creations of charm quarks may take place within the lifetime of the plasma. As a result, charm quarks may increase the bulk viscosity affecting the early stages of hydrodynamic expansion. Assuming thermalisation, we estimate the charm contribution to bulk viscosity within the same effective kinetic theory framework in which the light parton contribution has been computed previously. The time scale at which this physics becomes relevant is related to the width of the transport peak associated with the trace anomaly correlator and is found to be ≲20 fm/c for T≳600 MeV.
Resumo:
We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.
Resumo:
A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb−1 (20.3 fb−1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < mH < 400 GeV, produced in association with a Z boson and decaying to invisible particles.