980 resultados para 612
Resumo:
Maerl is a type of rhodolith, found in ecologically important beds of high conservation value; a major conservation objective is to establish growth rates. Maerl shows internal banding of controversial periodicity that may contain a high-resolution record of palaeoceanographic-palaeoclimatic data. To investigate growth rates and banding periodicity, we used the vital stain Alizarin Red in combination with scanning electron microscopy (SEM). Three maerl species, Phymatolithon calcareum, Lithothamnion corallioides and L. glaciale, were collected from maerl beds in Ireland. Following staining, maerl was grown in three controlled temperature treatments and at two depths in the field (P. calcareum only), with Corallina officinalis as a control for the stain. Alizarin Red was shown to be a suitable marker for growth in European maerl species and for C. officinalis. The average tip growth rate of P. calcareum from Northern Ireland at 10 m depth and under constant laboratory conditions was c. 0.9 mm yr(-1), double the rates observed at 5 m depth and in L. corallioides. Our measurements and re-examination of reported data allow us to conclude that the three most abundant maerl species in Europe grow about 1 (0.5-1.5) mm per tip per year under a wide range of field and artificial conditions. Internal banding in temperate European maerl revealed by SEM is a result of regular changes in wall thickness; the approximately monthly periodicity of bands in field-grown specimens is consistent with previous suggestions that they may be lunar. The potential for maerl banding to be a high-resolution record of palaeoclimatic and palaeoenvironmental change could be realized with this vital stain in conjunction with isotopic or microgeochemical analyses.
Resumo:
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.
Resumo:
Persistence of the asymmetrical tonic neck reflex (ATNR) was examined in children with partial hearing (aged 6–12 years). Core literacy skills were also assessed. Three groups of children were selected from three schools with special units for children with partial hearing. All children completed an upright ATNR test protocol and standardized tests of reading and spelling. Children with partial hearing had significant levels of ATNR persistence, and significant reading and spelling difficulties. The findings suggest that persistence of an early sub-cortical reflex system may be associated with some of the motor and cognitive difficulties experienced by children with partial hearing.
Resumo:
Email
Print
The accurate measurement of the permittivity, loss tangent and dielectric anisotropy DC bias dependence for two different liquid crystal (LC) materials in the frequency range 140-165 GHz is described. The electrical characteristics are obtained by curve fitting computed transmission coefficients to the experimental spectral response of a new class of electronically reconfigurable frequency selective surface. The periodic structure is designed to yield bandpass filter characteristics with and without an applied bias control voltage in order to measure the tunability of the LC material which is inserted in a 705 µm-thick cavity.
Resumo:
In the United Kingdom wind power is recognised as the main source of renewable energy to achieve the European Union 2020 renewable energy targets. Currently over 50% of renewable power is generated from onshore wind with a large number of offshore wind projects in development. Recently the government has re-iterated its commitment to offshore wind power and has announced that offshore wind subsidies are to increase from £135/MWh to £140/MWh until 2019. This paper provides a detailed overview of the offshore wind power industry in the United Kingdom in terms of market growth, policy development and offshore wind farm costs. The paper clearly shows that the United Kingdom is the world leader for installed offshore wind power capacity as pro-active policies and procedures have made it the most attractive location to develop offshore wind farm arrays. The key finding is that the United Kingdom has the potential to continue to lead the world in offshore wind power as it has over 48 GW of offshore wind power projects at different stages of operation and development. The growth of offshore wind power in the United Kingdom has seen offshore wind farm costs rise and level off at approximately £3 million/MW, which are higher than onshore wind costs at £1.5–2 million/MW. Considering the recent increase in offshore wind power subsidies and plans for 48 GW of offshore wind power could see more offshore wind power becoming increasingly financially competitive with onshore wind power. Therefore offshore wind power is likely to become a significant source of electricity in the United Kingdom beyond 2020.
Resumo:
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process
Resumo:
The process of learning to play a musical instrument necessarily alters the functional organisation of the cortical motor areas that are involved in generating the required movements. In the case of the harp, the demands placed on the motor system are quite specific. During performance, all digits with the sole exception of the little finger are used to pluck the strings. With a view to elucidating the impact of having acquired this highly specialized musical skill on the characteristics of corticospinal projections to the intrinsic hand muscles, focal transcranial magnetic stimulation (TMS) was used to elicit motor evoked potentials (MEPs) in three muscles (of the left hand): abductor pollicis brevis (APB); first dorsal interosseous (FDI); and abductor digiti minimi (ADM) in seven harpists. Seven non-musicians served as controls. With respect to the FDI muscle–which moves the index finger, the harpists exhibited reliably larger MEP amplitudes than those in the control group. In contrast, MEPs evoked in the ADM muscle–which activates the little finger, were smaller in the harpists than in the non-musicians. The locations on the scalp over which magnetic stimulation elicited discriminable responses in ADM also differed between the harpists and the non-musicians. This specific pattern of variation in the excitability of corticospinal projections to these intrinsic hand muscles exhibited by harpists is in accordance with the idiosyncratic functional demands that are imposed in playing this instrument.