996 resultados para 6-DISUBSTITUTED-1
Resumo:
The structure of 1,3-dimethylisoguanine [ or 6-amino-1,3-dimethyl-1H-purin- 2(3H)- one], C7H9N5O, has been redetermined and the correct assignment of H atoms on the heterocycle is now reported. Intermolecular hydrogen-bonding interactions confirm that this form is the correct molecular structure; this form is also in agreement with an earlier reported structure of the trihydrate form.
Resumo:
We propose and experimentally realize a composite Raman converter based on P-doped and Gedoped fibers. The converter has an emission wavelength of 1.649 μm and an output power of 1.2 W. Numerical simulation of the configuration suggested was performed. A similar converter scheme can be used to build sources with any emission wavelength in the range from 1.6 to 1.75 μm.
Resumo:
Chemical analyses of manganese nodules from the Central Pacific Basin show that their chemical composition varies regionally, although that of the associated sediments is markedly uniform throughout the basin. Mn content varies from 16 to 32% in average. Its higher value is generally found in nodules from siliceous clay and a few from deep-sea clay. Fe content tends to enrich in nodules from deep-sea clay area. Most manganese nodules, except those from deep-sea clay, are remarkably depleted in Fe compared with ones from the other Pacific regions. Mostly, Cu and Ni contents exceed 1% in nodules from siliceous clay, and decrease towards the northwest of the basin where deep-sea clay is distributed. The inter-element relationship between manganese nodules and associated sediments suggests that the mechanism of incorporation of major and minor elements in nodules is apparently different from that of the associated sediments. This finding seems to provide a new interpretation on the problem why manganese nodules having low accumulation rate are not buried by the associated sediments with greater sedimentation rate and then occur on sediment-seawater interface.
Resumo:
During expedition 202 of research vessel SONNE in 2009, 39 sea-floor surface sediments were sampled over a wide area across the North Pacific and the Bering Sea, which are well suited as reference archives of modern environmental processes. In this study, we used the samples to infer the documentation of land-ocean linkages of terrigenous sediment supply. We followed an integrated approach of grain-size analysis, bulk mineralogy, and clay mineralogy in combination with statistical data evaluation (end-member modelling of grain-size data, fuzzy-cluster analysis of mineralogical data), in order to identify the significant sources and modes of sediment transport in an overregional context. We also compiled literature data on clay mineralogy and updated those with the new data. Today, two processes of terrigenous sediment supply prevail in the study area: far-distant aeolian sediment supply to the pelagic North Pacific as well as hemipelagic sediment dispersal from nearby land sources by ocean currents along the continental margins and island arcs of the study area. The aeolian particles show the finest grain sizes (clay and fine silt), while the hemipelagic sediments have high abundances of sortable silt, particles >10 microns.
Resumo:
Nodule samples obtained were described and studied on board for 1) observation of occurrence and morphology in and outside samplers, size classification, measurement of weight and calculation of population density (kg/m2); 2) photographing whole nodules on the plate marked with the frames of unit areas of both 0cean-70 (0.50 m2) and freefall grab (0.13 m2), and that of typical samples on the plate with a 5 cm grid scale: 3) observation of internal structures of the nodules on cut section; and 4) determination of mineral composition by X-ray diffractometer. The relation between nodule types and geological environment or chemical composition was examined by referring to other data of related studies, such as sedimentology. acoustic survey, and chemical analysis.
Resumo:
This report of the GH76-1 cruise mainly includes the results of the on-board observations in the survey area of the medial-eastern part of Central Pacific Basin (5 degree -10 degree N, 170 degree -175 degree W) and partly of analytical work at the on-shore laboratory. In addition, the results of some on-board optical and geophysical works along the tracks of Japan-Ogasawara-survey area-Hawaii, are described in appendices. The GH76-1 cruise of the R/V Hakurei-maru was carried out from the 10th January to the 9th March, 1976 as the second phase field work of the Geological Survey of Japan five-year research program of study on the manganese nodule deposits of the Central Pacific Basin and also as a part of the National Research Institute for Pollution and Resources research program of technological study on the exploitation of deep sea mineral resources. The GSJ research program (F.Y. 1974-F.Y. 1978) aims at providing basic information on the manganese nodule distribution and their origin on the deep sea floor of the Central Pacific Basin bounded by the Marshall Ridge to the west, the Christmas Ridge to the east, and the Mid-Pacific Mountains to the north. The first phase of investigation was carried out during the GH74-5 cruise in the eastern part of the area (6 degree -10 degree 30'W, 164 degree 30'-171 degree 30'N)(Mizuno and Chujo, eds., 1975), and the present second phase covered an areas of 5 degree square, just west of the GH74-5 area.
Resumo:
The Integrated Ocean Drilling Program Expedition 308 (IODP308) drilled normal-pressured sediments from the Brazos-Trinity Basin IV and over-pressured sediments from the Ursa Basin on the northern slope of the Gulf of Mexico. The interstitial water samples from the normal-pressured basin show B concentrations and B isotopic compositions ranging from 255 to 631 µM (0.6 to 1.5 times of seawater value) and from +29.1 to +42.7 per mil (relative to NIST SRM 951), respectively. A wider range is observed both for B concentrations (292 to 865 µM, 0.7 to 2.1 times of seawater value) and d11B values (+25.5 to +43.2 per mil) of the interstitial water in the over-pressured basin. The down-core distribution of B concentrations and d11B values in the interstitial waters are sensitive tracers for assessing various processes occurring in the sediment column, including boron adsorption/desorption reactions involving clay minerals and organic matter in sediments as well as fluid migration and mixing in certain horizons and in the sediment column. In the normal-pressured basin adsorption/desorption reactions in shallow sediments play the major role in controlling the B content and B isotopic composition of the interstitial water. In contrast, multiple processes affect the B content and d11B of the interstitial water in the over-pressured Ursa Basin. There, the stratigraphic level of the maxima of B and d11B correspond to seismic reflectors. The intruded fluids along the seismic reflector boundary from high to low-topography mix with local interstitial water. Fluid flow is inferred in the Blue Unit (a coarse sandstone layer, connecting the high- to low-pressured region) from the freshening of interstitial water in Ursa Basin Site U1322, and upward flow by the overpressure expels fluid from the overburden above the Blue Unit.
Resumo:
Bulk delta15N values in surface sediment samples off the southwestern coast of Africa were measured to investigate the biogeochemical processes occurring in the water column. Nitrate concentrations and the degree of utilization of the nitrate pool are the predominant controls on sedimentary delta15N in the Benguela Current region. Denitrification does not appear to have had an important effect on the delta15N signal of these sediments and, based on delta15N and delta13C, there is little terrestrial input.
Resumo:
In the GH77-1 cruise, manganese nodules were obtained from 31 stations among 37 total ones. Here are reported the preliminary results of the observation mainly done on-board. Special attention was paid to confirming the applicability of the nodule type classification tentatively established in the previous GH76-1 cruise and to delineating the pattern of the nodule distribution and clarifying its relation to the geological factors, such as topography, surface sediment types, and substrate stratigraphy. In addition, a short description of the obtained rock samples from a few stations is included in this chapter.
Resumo:
We analysed the alkenone unsaturation ratio (UK'37) in 87 surface sediment samples from the western South Atlantic (5°N-50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK'37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by -2° to -6°C are found in the regions of the Brazil-Malvinas Confluence (35-39°S) and the Malvinas Current (41-48°S). From the oceanographic evidence these low UK'37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK'37 temperatures. In this way, particles and sediments carrying a cold water UK'37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.
Resumo:
Im Rahmen dieser Arbeit wurden selektive Inhibitoren der Glutathion-Transferase P1 (GSTP1) mit 1,2,4-Trioxanstruktur als potentielle Wirkstoffe gegen multiresistente Tumore synthetisiert. Die Darstellung dieser Substanzen erfolgte über Typ-II-Photooxygenierung allylischer Alkohole mit anschließender Säure-katalysierter Peroxyacetalisierung unter Verwendung von 4-Nitrobenzaldehyd. Über diesen Syntheseweg konnten unterschiedlich substituierte 1,2,4-Trioxane dargestellt werden. Die höchste biologische Aktivität zeigten Verbindungen mit aromatischen Estersubstituenten am 1,2,4-Trioxanring. Es wurde eine Leitstruktur entwickelt, die einen α,β-ungesättigten aromatischen Estersubstituenten in Position 6 des 1,2,4-Trioxangerüsts und in Position 3 einen 4-Nitrophenylsubstituenten aufweist. Die Verbindungen dieser Substanzklasse zeigen Inhibition der GSTP1 im niedrig mikromolaren Bereich. Durch Aktivitätsstudien an den GST-Klassen A und M konnte gezeigt werden, dass die Verbindungen selektiv GSTP1 inhibieren. Nachdem mittels quantitativer PCR 12 Krebszelllinien, die hohe GSTP1-Expressionsniveaus zeigen, identifiziert worden waren, wurde die Aktivität der 1,2,4-Trioxane gegenüber GST, die in Krebszelllysaten vorkommt, nachgewiesen. Die GST in der Brustkrebsepithelzelllinie HBL100 und der Lungenkarzinomzelllinie SK-MES-1 wird durch 1,2,4-Trioxane noch effektiver inhibiert als aufgereinigte GSTP1 (IC50 im nanomolaren Bereich).
Resumo:
Órgano de difusión del departamento y cuerpo académico de Botánica, FCB-UANL
Resumo:
Conspectus: The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide–alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10–30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of β-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation–CuAAC sequential protocol, providing β-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources.
Resumo:
Arm/Rmt methyltransferases have emerged recently in pathogenic bacteria as enzymes that confer high-level resistance to 4,6-disubstituted aminoglycosides through methylation of the G1405 residue in the 16S rRNA (like ArmA and RmtA to -E). In prokaryotes, nucleotide methylations are the most common type of rRNA modification, and they are introduced posttranscriptionally by a variety of site-specific housekeeping enzymes to optimize ribosomal function. Here we show that while the aminoglycoside resistance methyltransferase RmtC methylates G1405, it impedes methylation of the housekeeping methyltransferase RsmF at position C1407, a nucleotide that, like G1405, forms part of the aminoglycoside binding pocket of the 16S rRNA. To understand the origin and consequences of this phenomenon, we constructed a series of in-frame knockout and knock-in mutants of Escherichia coli, corresponding to the genotypes rsmF(+), ΔrsmF, rsmF(+) rmtC(+), and ΔrsmF rmtC(+). When analyzed for the antimicrobial resistance pattern, the ΔrsmF bacteria had a decreased susceptibility to aminoglycosides, including 4,6- and 4,5-deoxystreptamine aminoglycosides, showing that the housekeeping methylation at C1407 is involved in intrinsic aminoglycoside susceptibility in E. coli. Competition experiments between the isogenic E. coli strains showed that, contrary to expectation, acquisition of rmtC does not entail a fitness cost for the bacterium. Finally, matrix-assisted laser desorption ionization (MALDI) mass spectrometry allowed us to determine that RmtC methylates the G1405 residue not only in presence but also in the absence of aminoglycoside antibiotics. Thus, the coupling between housekeeping and acquired methyltransferases subverts the methylation architecture of the 16S rRNA but elicits Arm/Rmt methyltransferases to be selected and retained, posing an important threat to the usefulness of aminoglycosides worldwide.
Resumo:
The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.