943 resultados para 5-HT2A RECEPTORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. METHODS: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand (125)I-[D-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14) and the GRP-receptor subtype-preferring (125)I-[Tyr(4)]-bombesin. RESULTS: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. CONCLUSIONS: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and biological evaluation of four peptidomimetic analogs of somatostatin based on a constrained Trp residue, 3-amino-indolo[2,3-c]azepin-2-one (Aia), are reported. It is shown that dipeptidomimetics with a D-Aia-Lys sequence, functionalized with N- and C-terminal aromatic substituents, display a good selectivity for both sst4 and sst5. This study allowed us to identify a new highly potent sst5 agonist with good selectivity over the other receptors, except versus sst4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caring for a spouse with Alzheimer's disease (AD) is associated with overall health decline and impaired cardiovascular functioning. This morbidity may be related to the effects of caregiving stress and impaired coping on beta(2)-adrenergic receptors, which mediate hemodynamic and vascular responses and are important for peripheral blood mononuclear cell (PBMC) trafficking and cytokine production. This study investigated the longitudinal relationship between stress, personal mastery, and beta(2)-adrenergic receptor sensitivity assessed in vitro on PBMC. Over a 5-year study, 115 spousal AD caregivers completed annual assessments of caregiving stress, mastery, and PBMC beta(2)-adrenergic receptor sensitivity, as assessed by in vitro isoproterenol stimulation. Heightened caregiving stress was associated with significantly decreased receptor sensitivity, whereas greater sense of personal mastery was associated with significantly increased receptor sensitivity. These results suggest that increased stress may be associated with a desensitization of beta(2)-receptors, which may contribute to the development of illness among caregivers. However, increased mastery is associated with increased receptor sensitivity, and may therefore serve as a resource factor for improved health in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful peptide receptor imaging of tumors, as exemplified for somatostatin receptors, is based on the overexpression of peptide receptors in selected tumors and the high-affinity binding to these tumors of agonist radioligands that are subsequently internalized into the tumor cells in which they accumulate. Although in vitro studies have shown ample evidence that the ligand-receptor complex is internalized, in vivo evidence of agonist-induced internalization of peptide receptors, such as somatostatin receptors, is missing. METHODS: Rats subcutaneously transplanted with the somatostatin receptor subtype 2 (sst(2))-expressing AR42J tumor cells were treated with intravenous injections of various doses of the sst(2) agonist [Tyr(3), Thr(8)]-octreotide (TATE) or of the sst(2) antagonist 1,4,7,10-tetraazacyclododecane-N,N',N'',N''',-tetraacetic acid (DOTA)-Bass and were sacrificed at various times ranging from 2.5 min to 24 h after injection. The tumors and pancreas were then removed from each animal. All tissue samples were processed for sst(2) immunohistochemistry using sst(2)-specific antibodies. RESULTS: Compared with the sst(2) receptors in untreated animals, which localized at the plasma membrane in pancreatic and AR42J tumor cells, the sst(2) receptors in treated animals are detected intracellularly after an intravenous injection of the agonist TATE. Internalization is fast, as the receptors are already internalizing 2.5 min after TATE injection. The process is extremely efficient, as most of the cell surface receptors internalize into the cell and are found in endosomelike structures after TATE injection. The internalization is most likely reversible, because 24 h after injection the receptors are again found at the cell surface. The process is also agonist-dependent, because internalization is seen with high-affinity sst(2) agonists but not with high-affinity sst(2) antagonists. The same internalization properties are seen in pancreatic and AR42J tumor cells. They can further be confirmed in vitro in human embryonic kidney-sst(2) cells, with an immunofluorescence microscopy-based sst(2) internalization assay. CONCLUSION: These animal data strongly indicate that the process of in vivo sst(2) internalization after agonist stimulation is fast, extremely efficient, and fully functional under in vivo conditions in neoplastic and physiologic sst(2) target tissues. This molecular process is, therefore, likely to be responsible for the high and long-lasting uptake of sst(2) radioligands seen in vivo in sst(2)-expressing tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolabeled antagonists of specific peptide receptors identify a higher number of receptor binding sites than agonists and may thus be preferable for in vivo tumor targeting. In this study, two novel radioiodinated 1,4-benzodiazepines, (S)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (9) and (R)-1-(3-iodophenyl)-3-(1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)urea (7), were developed. They were characterized in vitro as high affinity selective antagonists at cholecystokinin types 1 and 2 (CCK(1) and CCK(2)) receptors using receptor binding, calcium mobilization, and internalization studies. Their binding to human tumor tissues was assessed with in vitro receptor autoradiography and compared with an established peptidic CCK agonist radioligand. The (125)I-labeled CCK(1) receptor-selective compound 9 often revealed a substantially higher amount of CCK(1) receptor binding sites in tumors than the agonist (125)I-CCK. Conversely, the radioiodinated CCK(2) receptor-selective compound 7 showed generally weaker tumor binding than (125)I-CCK. In conclusion, compound 9 is an excellent radioiodinated nonpeptidic antagonist ligand for direct and selective labeling of CCK(1) receptors in vitro. Moreover, it represents a suitable candidate to test antagonist binding to CCK(1) receptor-expressing tumors in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delta (delta) subunit containing GABA(A) receptors are expressed extra-synaptically and mediate tonic inhibition. In cerebellar granule cells, they often form a receptor together with alpha(6) subunits. We were interested to determine the architecture of these receptors. We predefined the subunit arrangement of 24 different GABA(A) receptor pentamers by subunit concatenation. These receptors (composed of alpha(6), beta(3) and delta subunits) were expressed in Xenopus oocytes and their electrophysiological properties analyzed. Currents elicited in response to GABA were determined in presence and absence of 3alpha, 21-dihydroxy-5alpha-pregnan-20-one and to 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. alpha(6)-beta(3)-alpha(6)/delta receptors showed a substantial response to GABA alone. Three receptors, beta(3)-alpha(6)-delta/alpha(6)-beta(3), alpha(6)-beta(3)-alpha(6)/beta(3)-delta and beta(3)-delta-beta(3)/alpha(6)-beta(3), were only uncovered in the combined presence of the neurosteroid 3alpha, 21-dihydroxy-5alpha-pregnan-20-one with GABA. All four receptors were activated by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol. None of the functional receptors was modulated by physiological concentrations (up to 30 mM) of ethanol. GABA concentration response curves indicated that the delta subunit can contribute to the formation of an agonist site. We conclude from the investigated receptors that the delta subunit can assume multiple positions in a receptor pentamer composed of alpha(6), beta(3) and delta subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5' UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymph nodes with Hodgkin disease (HD) harbor few neoplastic cells in a marked leukocytic infiltrate. Since chemokines are likely to be involved in the recruitment of these leukocytes, the expression of potentially relevant chemokines and chemokine receptors were studied in lymph nodes from 24 patients with HD and in 5 control lymph nodes. The expression of regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta was analyzed by in situ hybridization and that of CCR3 and CCR5 by immunohistochemistry and flow cytometry. It was found that, overall, the expression of all 4 chemokines was markedly enhanced, but the cellular source was different. RANTES was expressed almost exclusively by T cells whereas the expression of MCP-1, MIP-1alpha, and MIP-1beta was confined largely to macrophages. In control lymph nodes, chemokine expression was low, with the exception of MIP-1alpha in macrophages. CCR3 and CCR5 were highly expressed in T cells of HD involved but not of control lymph nodes. CCR3 was equally distributed in CD4+ and CD8+ cells, but CCR5 was associated largely with CD4+ cells. In HD lymph nodes, CCR3 and CCR5 were also expressed in B cells, which normally do not express these receptors. All these chemokines and receptors studied, by contrast, were absent in the neoplastic cells. It was concluded that chemokines are involved in the formation of the HD nonneoplastic leukocytic infiltrate. Expression of CCR3 and CCR5 appears to be characteristic of HD, but the roles of these receptors' up-regulation for the disease process remain unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.