577 resultados para 4c
Resumo:
Oxygen-isotope ratio measurements are presented for the planktonic species Globigerinoides ruber collected from shallow-water, upper-slope sediments from Holes 820A and 820B in 280 m of water, on the seaward edge of the Great Barrier Reef. Correlation of the Site 820 isotope curve with deep-sea reference curves of the Pacific Ocean (Core V28-238, Hole 677A, Hole 607A) permits the definition of isotope stages 1 to 19 in the top 145 m of Holes 820A and 820B. However, paleontological data indicate that stages 4 and 7 might be missing and that two hiatuses occur at a depth of 8.05 to 12.1 and 34.55 to 35.8 mbsf. Using deep-sea Hole 677A as a reference for ice-volume variations, we determine the difference in isotopic signature between it and Site 820. We propose that this difference is a regional signal representing a progressive 4°C increase in surface-water temperature at Site 820. The proposed temperature change was initiated at about 400 k.y. and corresponds to a change from high-to-low frequency variations in Pleistocene isotope signals. We postulate that these changes may have catalyzed the growth of the Great Barrier Reef. The shift also coincides with changes in seismic character and some physical and chemical sediment characteristics.
Resumo:
Stratigraphic, faunal and isotopic analyses of the Maastrichtian at DSDP sites 525A and 21 in the South Atlantic reveal a planktic foraminiferal fauna characterized by two major events, an early late Maastrichtian diversification and end-Maastrichtian mass extinction. Both events are accompanied by major changes in climate and productivity. The diversification event which occurred in two steps between 70.5 and 69.1 Ma increased species richness by a total of 43% and coincided with the onset of major cooling in surface and bottom waters and increased surface productivity. The onset of the terminal decline in Maastrichtian species richness began at 67.5 Ma and the first significant decline in surface productivity occurred at 66.2 Ma, coincident maximum cooling to 13°C in surface waters and the reduction of the surface-to-deep temperature gradient to less than 5°C. Major climatic and moderate productivity changes mark the mass extinction and the last 500 kyr of the Maastrichtian. Between 200 and 400 kyr before the K-T boundary surface and deep waters warmed rapidly by 3-4°C and cooled again during the last 100 kyr of the Maastrichtian. Surface productivity decreased only moderately across the K-T boundary. Species richness began to decline during the late Maastrichtian cooling and by K-T boundary time, the mass extinction had claimed 66% of the species. Viewed within the context of Maastrichtian climate and productivity changes, the K-T mass extinction could have resulted from extreme environmental stress even without the addition of an extraterrestrial impact.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
A low capacity for regulation of extracellular Mg2+ has been proposed to exclude reptant marine decapod crustaceans from temperatures below 0°C and thus to exclude them from the high Antarctic. To test this hypothesis and to elaborate the underlying mechanisms in the most cold-tolerant reptant decapod family of the sub-Antarctic, the Lithodidae, thermal tolerance was determined in the crab Paralomis granulosa (Decapoda, Anomura, Lithodidae) using an acute stepwise temperature protocol (-1°, 1°, 4°, 7°, 10°, and 13°C). Arterial and venous oxygen partial pressures (Po2) in hemolymph, heartbeat and ventilation beat frequencies, and hemolymph cation composition were measured at rest and after a forced activity (righting) trial. Scopes for heartbeat and ventilation beat frequencies and intermittent heartbeat and scaphognathite beat rates at rest were evaluated. Hemolymph [Mg2+] was experimentally reduced from 30 mmol/L to a level naturally observed in Antarctic caridean shrimps (12 mmol/L) to investigate whether the animals remain more active and tolerant to cold (-1°, 1°, and 4°C). In natural seawater, righting speed was significantly slower at -1° and 13°C, compared with acclimation temperature (4°C). Arterial and venous hemolymph Po2 increased in response to cooling even though heartbeat and ventilation beat frequencies as well as scopes decreased. At rest, ionic composition of the hemolymph was not affected by temperature. Activity induced a significant increase in hemolymph [K+] at -1° and 1°C. Reduction of hemolymph [Mg2+] did not result in an increase in activity, an increase in heartbeat and ventilation beat frequencies, or a shift in thermal tolerance to lower temperatures. In conclusion, oxygen delivery in this cold-water crustacean was not acutely limiting cold tolerance, and animals may have been constrained more by their functional capacity and motility. In contrast to earlier findings in temperate and subpolar brachyuran crabs, these constraints remained insensitive to changing Mg2+ levels.
Resumo:
The motivation for ISSS-08 was to alleviate the scarcity of observational data on transport and processing of water, sediment and carbon on the East Siberian Arctic Shelves (ESAS). The region is of particular interest from the perspective of carbon-climate couplings as it has witnessed a 4°C springtime positive temperature anomaly for 2000-2005 compared with preceding decades. A complex sampling program was accomplished during the 50-days ISSS-08 cruise August - September 2008 by participants from 12 organizations in Russia, Sweden, UK and USA.
Resumo:
The Late Paleocene and Early Eocene were characterised by warm greenhouse climates, punctuated by a series of rapid warming and ocean acidification events known as "hyperthermals", thought to have been paced or triggered by orbital cycles. While these hyperthermals, such as the Paleocene Eocene Thermal Maximum (PETM), have been studied in great detail, the background low-amplitude cycles seen in carbon and oxygen-isotope records throughout the Paleocene-Eocene have hitherto not been resolved. Here we present a 7.7 million year (myr) long, high-resolution, orbitally-tuned, benthic foraminiferal stable-isotope record spanning the late Paleocene and early Eocene interval (~52.5 - 60.5 Ma) from Ocean Drilling Program (ODP) Site 1262, South Atlantic. This high resolution (~2-4 kyr) record allows the changing character and phasing of orbitally-modulated cycles to be studied in unprecedented detail as it reflects the long-term trend in carbon cycle and climate over this interval. The main pacemaker in the benthic oxygen-isotope (d18O) and carbon-isotope (d13C) records from ODP Site 1262, are the long (405 kyr) and short (100 kyr) eccentricity cycles, and precession (21 kyr). Obliquity (41 kyr) is almost absent throughout the section except for a few brief intervals where it has a relatively weak influence. During the course of the Early Paleogene record, and particularly in the latest Paleocene, eccentricity-paced negative carbon-isotope excursions (d13C, CIEs) and coeval negative oxygen-isotope (d18O) excursions correspond to low carbonate (CaCO3) and coarse fraction (%CF) values due to increased carbonate dissolution, suggesting shoaling of the lysocline and accompanied changes in the global exogenic carbon cycle. These negative CIEs and d18O events coincide with maxima in eccentricity, with changes in d18O leading changes in d13C by ~6 (±5) kyr in the 405-kyr band and by ~3 (±1) kyr in the higher frequency 100-kyr band on average. However, these phase lags are not constant, with the lag in the 405-kyr band extending from ~4 (±5) kyr to ~21 (±2) kyr from the late Paleocene to the early Eocene, suggesting a progressively weaker coupling of climate and the carbon-cycle with time. The higher amplitude 405-kyr cycles in the latest Paleocene are associated with changes in bottom water temperature of 2-4ºC, while the most prominent 100 kyr-paced cycles can be accompanied by changes of up to 1.5ºC. Comparison of the 1262 record with a lower resolution, but orbitally-tuned benthic record for Site 1209 in the Pacific allows for verification of key features of the benthic isotope records which are global in scale including a key warming step at 57.7 Ma.
Resumo:
Sea surface temperature (SST) and seawater d18O (d18Ow) were reconstructed in a suite of sediment cores from throughout the Arabian Sea for four distinct time intervals (0 ka, 8 ka, 15 ka, and 20 ka) with the aim of understanding the history of the Indian Monsoon and the climate of the Arabian Sea region. This was accomplished through the use of paired Mg/Ca and d18O measurements of the planktonic foraminifer Globigerinoides ruber. By analyzing basin-wide changes and changes in cross-basinal gradients, we assess both monsoonal and regional-scale climate changes. SST was colder than present for the majority of sites within all three paleotime slices. Furthermore, both the Indian Monsoon and the regional Arabian Sea mean climate have varied substantially over the past 20 kyr. The 20 ka and 15 ka time slices exhibit average negative temperature anomalies of 2.5°-3.5°C attributable, in part, to the influences of glacial atmospheric CO2 concentrations and large continental ice sheets. The elimination of the cross-basinal SST gradient during these two time slices likely reflects a decrease in summer monsoon and an increase in winter monsoon strength. Changes in d18Ow that are smaller than the d18O signal due to global ice volume reflect decreased evaporation and increased winter monsoon mixing. SSTs throughout the Arabian Sea were still cooler than present by an average of 1.4°C in the 8 ka time slice. These cool SSTs, along with lower d18Ow throughout the basin, are attributed to stronger than modern summer and winter monsoons and increased runoff and precipitation. The results of this study underscore the importance of taking a spatial approach to the reconstruction of processes such as monsoon upwelling.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.
Resumo:
King George Island is located at the northern tip of the Antarctic Peninsula, which is influenced by maritime climate conditions. The observed mean annual air temperature at sea level is -2.4°C. Thus, the ice cap is regarded as sensitive to changing climatic conditions. Ground-penetrating radar surveys indicate a partly temperate ice cap with an extended water layer at the firn/ice transition of the up to 700 m high ice cap. Measured firn temperatures are close to 0°C at the higher elevations, and they differ considerably from the measured mean annual air temperature. The aim of this paper is to present ice-flow dynamics by means of observations and simulations of the flow velocities. During several field campaigns from 1997/98 to 2008/09, ice surface velocities were derived with repeated differential GPS measurements. Ice velocities vary from 0.7 m/a at the dome to 112.1 m/a along steep slopes. For the western part of the ice cap a three-dimensional diagnostic full-Stokes model was applied to calculate ice flow. Parameters of the numerical model were identified with respect to measured ice surface velocities. The simulations indicate cold ice at higher elevations, while temperate ice at lower elevations is consistent with the observations.
Resumo:
During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.
Resumo:
This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.