961 resultados para 300100 Soil and Water Sciences
Resumo:
The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990’s. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass , Sparse Sawgrass , Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh.We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.
Resumo:
We describe trajectories of selected ecological indicators used as performance measures to evaluate the success of a mangrove rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM) Delta-Lagoon complex, Colombia, as result of freshwater diversions initiated in 1995. There is a significant reduction in soil and water column salinity in all sampling stations following the hydraulic reconnection of the Clarín and Aguas Negras channels to the Magdalena River. Soil intersticial water salinity (depth: 0.5 m) (7 stations) and water column salinity (0.5 m) (10 stations) values declined significantly (soil <30 g kg-1; water <10 g kg-1) from 1994 to 2000. During 1994 soil interstitial water salinity ranged from 40 g kg-1 (Rinconada) to 100 g kg-1 (KM 13), while water column salinity fluctuated between 25-35 g kg-1 for most of the sampling stations. This salinity reduction increased mangrove forest regeneration promoting a net gain of 99 km2 from 1995 to 1999. The high precipitation recorded in 1995 and 1999 caused by El Niño-La Niña (ENSO), coinciding with the channels rehabilitation, influenced rapid mangrove regeneration. The lack of economic investment in the maintenance of the diversion structures from 2001 to 2004 caused a salinity increase affecting negatively already restored vegetation. A sustainable effort from the international community and the Colombian government is needed to maintain the strategic social and economic benefits reached until 2000 in the CGSM region.
Resumo:
Everglades periphyton mats are tightly-coupled autotrophic (algae and cyanobacteria) and heterotrophic (eubacteria, fungi and microinvertebrates) microbial assemblages. We investigated the effect of water column total phosphorus and nitrogen concentrations, water depth and hydroperiod on periphyton of net production, respiration, nutrient content, and biomass. Our study sites were located along four transects that extended southward with freshwater sheetflow through sawgrass-dominated marsh. The water source for two of the transects were canal-driven and anchored at canal inputs. The two other transects were rain-driven (ombrotrophic) and began in sawgrass-dominated marsh. Periphyton dynamics were examined for upstream and downstream effects within and across the four transects. Although all study sites were characterized as short hydroperiod and phosphorus-limited oligotrophic, they represent gradients of hydrologic regime, water source and water quality of the southern Everglades. Average periphyton net production of 1.08 mg C AFDW−1 h−1 and periphyton whole system respiration of 0.38 mg C AFDW−1 h−1 rates were net autotrophic. Biomass was generally highest at ombrotrophic sites and sites downstream of canal inputs. Mean biomass over all our study sites was high, 1517.30 g AFDW m−2. Periphyton was phosphorus-limited. Average periphyton total phosphorus content was 137.15 μg P g−1 and average periphyton total N:P ratio was 192:1. Periphyton N:P was a sensitive indicator of water source. Even at extremely low mean water total phosphorus concentrations ( ≤ 0.21 μmol l−1), we found canal source effects on periphyton dynamics at sites adjacent to canal inputs, but not downstream of inflows. These canal source effects were most pronounced at the onset of wet season with initial rewetting. Spatial and temporal variability in periphyton dynamics could not solely be ascribed to water quality, but was often associated with both hydrology and water source.
Resumo:
Recent research makes clear that much of the Everglade’s flora and fauna have evolved to tolerate or require frequent fires. Nevertheless, restoration of the Everglades has thus far been conceptualized as primarily a water reallocation project. These two forces are directly linked by the influence of water flows on fire fuel moisture content, and are indirectly linked through a series of complex feedback loops. This interaction is made more complex by the alteration and compartmentalization of current water flows and fire regimes, the lack of communication between water and fire management agencies, and the already imperiled state of many local species. It is unlikely, therefore, that restoring water flows will automatically restore the appropriate fire regimes, leaving the prospect of successful restoration in some doubt. The decline of the Cape Sable seaside sparrow, and its potential for recovery, illustrates the complexity of the situation.
Resumo:
Acknowledgements We are grateful to the United Kingdom Economic and Social Research Council Nexus Network for funding this work.
Resumo:
Acknowledgements We are grateful to the United Kingdom Economic and Social Research Council Nexus Network for funding this work.
Resumo:
Peer reviewed
Resumo:
Acknowledgements We are grateful to the United Kingdom Economic and Social Research Council Nexus Network for funding this work.
Resumo:
Aragonitic clathrites are methane-derived precipitates that are found at sites of massive near-seafloor gas hydrate (clathrate) accumulations at the summit of southern Hydrate Ridge, Cascadia margin. These platy carbonate precipitates form inside or in proximity to gas hydrate, which in our study site currently coexists with a fluid that is highly enriched in dissolved ions as salts are excluded during gas hydrate formation. The clathrites record the preferential incorporation of 18O into the hydrate structure and hence the enrichment of 16O in the surrounding brine. We measured d18O values as high as 2.27 per mil relative to Peedee belemnite that correspond to a fluid composition of -1.18 per mil relative to standard mean ocean water. The same trend can be observed in Ca isotopes. Ongoing clathrite precipitation causes enrichment of the 44Ca in the fluid and hence in the carbonates. Carbon isotopes confirm a methane source for the carbonates. Our triple stable isotope approach that uses the three main components of carbonates (Ca, C, O) provides insight into multiple parameters influencing the isotopic composition of the pore water and hence the isotopic composition of the clathrites. This approach provides a tool to monitor the geochemical processes during clathrate and clathrite formation, thus recording the evolution of the geochemical environment of gas hydrate systems.
Resumo:
In this report, the results of a 2000-2001 radiogeoecological investigation are presented for the region of the Ob and Yenisei estuaries and the adjacent Kara Sea. In order to study the behaviour and migration of Cs, Sr and Pu radionuclides in a river - sea system experimental research on the distribution of these radionuclides in the water column and surface sediments has been carried out. In addition, the role of suspended and dissolved organic matter on the behaviour of radionuclides in water solutions has been studied. The 137Cs and 239,240Pu concentrations in the upper 0-2cm layer of the sediments varied between 1,4 and 50,0 Bq/kg, with a mean of 12,4 Bq/kg, and between 0,065-1,96 Bq/kg, with a mean of 0,62 Bq/kg, respectively. There is a direct relationship of a specific radioactivity of 137Cs and 239,240Pu in the sediments and the content of clay fraction. The 137Cs, 90Sr and 239,240Pu concentrations in the water samples varied between 0,4 and 7,0 Bq/m**3 (mean of 3,6 Bq/m**3), 0,4 and 9,7 Bq/m**3 (mean of 3,3 Bq/m**3), and 0,01-0,3 Bq/m**3 (mean of 0,02 Bq/m**3), respectively. In the water samples the concentration of the water-soluble species l37Cs increases with increasing salinity, whereas the concentration of the 90Sr-radionuclide decreases with increasing salinity. This may be related to the physico-chemical behaviour of these radionuclides in water solutions and the influence of several sources on radioactive pollution in this basin. In sea water the suspended matter may absorb up to 10% 137Cs, 90Sr and 239,240Pu, in river water samples these values may reach 15-30%. More than 50% 90Sr and 239,240Pu is able to form complexes with dissolved organic matter. This effect is smaller in saline water. The comparison of the data of 137Cs radioactivity in the surface sediments in 1995 and 2000-2001 showed that the level of radioactivity has decreased.