957 resultados para 270501 Animal Systematics, Taxonomy and Phylogeny


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title on spine: Drosophila pseudoobdscura and its relatives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No title page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Remarks and references to literature": vol. 2, p. [459]-490.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on : 1980-Oct. 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulficlophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: + 133 mV (pH 6.0); + 104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxY, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Birds show striking interspecific variation in their use of carotenoid-based coloration. Theory predicts that the use of carotenoids for coloration is closely associated with the availability of carotenoids in the diet but, although this prediction has been supported in single-species studies and those using small numbers of closely related species, there have been no broad-scale quantitative tests of the link between carotenoid coloration and diet. Here we test for such a link using modern comparative methods, a database on 140 families of birds and two alternative avian phylogenies. We show that carotenoid pigmentation is more common in the bare parts (legs, bill and skin) than in plumage, and that yellow coloration is more common than red. We also show that there is no simple, general association between the availability of carotenoids in the diet and the overall use of carotenoid-based coloration. However, when we look at plumage coloration separately from bare part coloration, we find there is a robust and significant association between diet and plumage coloration, but not between diet and bare part coloration. Similarly, when we look at yellow and red plumage colours separately, we find that the association between diet and coloration is typically stronger for red coloration than it is for yellow coloration. Finally, when we build multivariate models to explain variation in each type of carotenoid-based coloration we find that a variety of life history and ecological factors are associated with different aspects of coloration, with dietary carotenoids only being a consistent significant factor in the case of variation in plumage. All of these results remain qualitatively unchanged irrespective of the phylogeny used in the analyses, although in some cases the precise life history and ecological variables included in the multivariate models do vary. Taken together, these results indicate that the predicted link between carotenoid coloration and diet is idiosyncratic rather than general, being strongest with respect to plumage colours and weakest for bare part coloration. We therefore suggest that, although the carotenoid-based bird plumage may a good model for diet-mediated signalling, the use of carotenoids in bare part pigmentation may have a very different functional basis and may be more strongly influenced by genetic and physiological mechanisms, which currently remain relatively understudied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The parasite community of animals is generally influenced by host physiology, ecology, and phylogeny. Therefore, sympatric and phylogenetically related hosts with similar ecologies should have similar parasite communities. To test this hypothesis we surveyed the endoparasites of 5 closely related cheilinine fishes (Labridae) from the Great Barrier Reef. They were Cheilinus chlorounts, C. trilobatus, C. fasciatils, Epibulus insidiator and OxYcheilinus diagrainnia. VVe examined the relationship between parasitological variables (richness, abundance and diversity) and host characteristics (bodv weight, diet and phuylogeny). The 5 fishes had 31 parasite species with 9-18 parasite species per fish species. Cestode larvae (mostly Tetraphyllidea) were the most abundant and prevalent parasites followed by nematodes and digeneans. Parasites, body size and diet of hosts differed between fish species. In general, body weight, diet and host phylogeny each explained some of the variation in richness and composition of parasites among the fishes. The 2 most closely related species, Cheilinus chlorourus and C. trilobatus, had broadly similar parasites but the Other fish species differed significantly in all variables. However, there was no all -encompassing pattern. This may, be because different lineages of parasites may react differently to ecological variables. We also argue that adult parasites may respond principally to host diet. In contrast, larval parasite composition may respond both to host diet and predator-prey interactions because this is the path by which many, parasites complete their life-cycles. Finally, variation in parasite phylogeny and parasite life-cycles among hosts likely increase the complexity of the system making it difficult to find all-encompassing patterns between host characteristics and parasites, particularly when all the species in rich parasite communities are considered.