749 resultados para 2004-07-BS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characteristics of supersonic combustion by injecting kerosene vapor into a Mach 2.5 crossflow at various preheat temperatures and pressures were investigated experimentally. A two-stage heating system has been designed and tested, which can prepare heated kerosene of 0.8 kg up to 820 K at pressure of 5.5 Mpa with minimum/negligible fuel coking. In order to simulate the thermophysical properties of kerosene over a wide range of thermodynamic conditions, a three-component surrogate that matches the compound class of the parent fuel was employed. The flow rate of kerosene vapor was calibrated using a sonic nozzle. Computed flow rates using the surrogate fuel are in agreement with the experimental data. Kerosene jets at various preheat temperatures injecting into both quiescent environment and Mach 2.5 crossflow were visualized. It was found that at injection pressure of 4 Mpa and preheat temperature of 550 K the kerosene jet was completely in vapor phase, while keeping almost the same penetration depth as compared to the liquid kerosene injection. Supersonic combustion tests were also carried out to compare the combustor performance for the cases of vaporized kerosene injection, liquid kerosene injection, and effervescent atomization with hydrogen barbotage, under the similar stagnation conditions. Experimental results demonstrated that the use of vaporized kerosene injection leads to better combustor performance. Further parametric study on vaporized kerosene injection in a supersonic model combustor is needed to assess the combustion efficiency as well as to identify the controlling mechanism for the overall combustion enhancement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper the Deflagration to Detonation Transition (DDT) process of gaseous H-2-O-2 mixture and Mach reflection of gaseous detonation wave on a wedge have been conducted experimentally. The cellular pattern of DDT process and Mach reflection were obtained from experiments with wedge angle theta = 10(0) similar to 40(0) and initial pressure of gaseous mixture 16kPa similar to 26.7kPa. The 2-D numerical simulations of DDT process and Mach reflection of detonation wave were performed by using the simplified ZND model and improved space-time conservation element and solution element (CE/SE) method. The numerical cellular structures were compared with the cellular patterns of soot track. Compared results were shown that it is satisfactory. The characteristic comparisons on Mach reflection of air shock wave and detonation wave were carried also out and their differences were given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper will introduce an atomization experiment of pulsed supersonic water jets and polymer polyacrylamide (PAA) (0.1% and 1.0% weight density) solution jets. The jets are generated from a small high-speed liquid jet apparatus. The schlieren photography is applied to visualize the jets. The velocities of the jets are measured by cutting two laser beams. The effects of the nozzle diameter and the standoff distance on atomization and the jet velocity have been examined. The experiment shows that the polymer solution jets are easier to be atomized than water jets. This may be due to low surface tension of the polymer solution. The nozzle diameter causes different shock structures around the supersonic jets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Injection and combustion of vaporized kerosene was experimentally investigated in a Mach 2.5 model combustor at various fuel temperatures and injection pressures. A unique kerosene heating and delivery system, which can prepare heated kerosene up to 820 K at a pressure of 5.5 MPa with negligible fuel coking, was developed. A three-species surrogate was employed to simulate the thermophysical properties of kerosene. The calculated thermophysical properties of surrogate provided insight into the fuel flow control in experiments. Kerosene jet structures at various preheat temperatures injecting into both quiescent environment and a Mach 2.5 crossflow were characterized. It was shown that the use ofvaporized kerosene injection holds the potential of enhancing fuel-air mixing and promoting overall burning. Supersonic combustion tests further confirmed the preceding conjecture by comparing the combustor performances of supercritical kerosene with those of liquid kerosene and effervescent atomization with hydrogen barbotage. Under the similar flow conditions and overall kerosene equivalence ratios, experimental results illustrated that the combustion efficiency of supercritical kerosene increased approximately 10-15% over that of liquid kerosene, which was comparable to that of effervescent atomization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Validated by comparison with DNS, numerical database of turbulent channel flows is yielded by Large Eddy Simulation (LES). Three conventional techniques: uv quadrant 2, VITA and mu-level techniques for detecting turbulent bursts are applied to the identification of turbulent bursts. With a grouping parameter introduced by Bogard & Tiedemann (1986) or Luchik & Tiederman (1987), multiple ejections detected by these techniques which originate from a single burst can be grouped into a single-burst event. The results are compared with experimental results, showing that all techniques yield reasonable average burst period. However, uv quadrant 2 and mu-level are found to be superior to VITA in having large threshold-independent range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents an experimental study on critical sensitivity in rocks. Critical sensitivity means that the response of a system to external controlling variable may become significantly sensitive as the system approaches its catastrophic rupture point. It is found that the sensitivities measured by responses on three scales (sample scale, locally macroscopic scales and mesoscopic scale) display increase prior to catastrophic transition point. These experimental results do support the concept that critical sensitivity might be a common precursory feature of catastrophe. Furthermore, our previous theoretical model is extended to explore the fluctuations in critical sensitivity in the rock tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A shock tube method is introduced to study the ionization–recombination kinetics of high temperature gas, in which a test gas is heated and ionized by a reflected shock wave and subsequently quenched by a strong rarefaction wave reflected on the end wall of the driver section as the main cooling wave associated with a rarefaction wave incident back into region 5 when the reflected shock wave interacts with the contact surface. As the quenching rate of the strong rarefaction wave reaches 106 K/s, a nonequilibrium ionization-recombination process occurs, during which the ion recombination with electrons dominates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

微重力对空间细胞培养的影响规律一直是国际空间生物学的重点研究领域。而空间细胞培养技术和方法作为空间细胞生物学研究的基础,其概念性和原理性设计是正确区分重力对细胞的直接作用和间接作用的前提。另外,空间实验成本高昂,空间细胞培养装置的体积、重量、功耗是首要的制约因素。为保证充分物质交换,满足细胞代谢需求,同时尽可能降低由细胞供液形式产生的力学环境对细胞的影响,区分重力对细胞的直接作用和间接作用,我们研制了逆流片层式微型细胞培养装置。实验表明为使培养液流动对细胞生长影响最小,流动剪切应变率应小于1s-1。通过理论计算分析的逆流片层式微型细胞培养装培养室内流场及流动剪切范围表明,该装置可以满足要求。通过实验检测细胞培养时的氧耗、糖耗等,可以确定不同种类细胞的培养液流量范围。培养室内采用经表面改性的聚合物网架作为细胞载体,使得培养空间得到充分利用,并利于操作。从而为空间细胞培养研究提供了一种新的技术手段。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present research work, the thermal capillary convection has been investigated and measured by particle image velocimetry (PIV) technique. There is one liquid layer in a rectangular cavity with different temperature’s sidewalls. The cavity is 52mm,42mm,20mm, 4mm in height of the silicon oil liquid layer. A sidewall of the cavity is heated by electro-thermal film, another sidewall is cooled by the semiconductor cooling sheet. The velocity field and the stream lines in cross section in liquid layer have been obtained at different temperature difference. The present experiment demonstrates that the pattern of the convection mainly relates with temperature difference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulation was conducted to study the kerosene spray characteristics injecting into supersonic cross flow. The verification of the simulation was carried out by experimental Schlieren image, and the agreement was obtained by compared the spray plume pictures. Furthermore, the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets was investigated. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starting from the second-order finite volume scheme,though numerical value perturbation of the cell facial fluxes, the perturbational finite volume (PFV) scheme of the Navier-Stokes (NS) equations for compressible flow is developed in this paper. The central PFV scheme is used to compute the one-dimensional NS equations with shock wave.Numerical results show that the PFV scheme can obtain essentially non-oscillatory solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研制了窄通道流动沸腾传热实验装置,两个实验流道均为矩形截面,尺寸分别为14.0?1.40mm^2和14.5?2.25^2,相应的水力直径分别为2.54和3.88mm。通过R113单相强迫对流传热实验研究,验证了该实验装置及其测控系统的可靠性与所获得实验数据的重复性都令人满意。进行了过冷流动沸腾实验研究,给出了不同窄缝高度时的流型图,并与微重力气液两相流型转换模型进行了比较,分析了微重力与小通道两相流型转换间的异同及其原因。获得了不同窄缝高度过冷流动沸腾传热实验数据,和目前常用传热预测模型比较,发现不考虑流型特征的通用型预测关联式只能与部分实验数据相符合;基于流型特征,提出了一组新的关联形式,很好地预测了实验数据的变化趋势。