953 resultados para 20-hydroxyeicosatetraenoic Acid
Resumo:
A new cold-inducible genetic construct was cloned using a chloroplast-specific omega-3-fatty acid desaturase gene (FAD7) under the control of a cold-inducible promoter (cor15a) from Arabidopsis thaliana. RT-PCR confirmed a marked increase in FAD7 expression, in young Nicotiana tabacum (cv. Havana) plants harboring cor15a-FAD7, after a short-term exposure to cold. When young, cold-induced tobacco seedlings were exposed to low-temperature (0.5, 2 or 3.5 degrees C) for up to 44 days, survival within independent cor15a-FAD7 transgenic lines (40.2-96%) was far superior to the wild type (6.7-10.2%). In addition, the major trienoic fatty acid species remained stable in cold-induced cor15a-FAD7 N. tabacum plants under prolonged cold storage while the levels of hexadecatrienoic acid (16:3) and octadecatrienoic acid (18:3) declined in wild type plants under the same conditions (79 and 20.7% respectively). Electron microscopy showed that chloroplast membrane ultrastructure in cor15a-FAD7 transgenic plants was unaffected by prolonged exposure to cold temperatures. In contrast, wild type plants experienced a loss of granal stacking and disorganization of the thylakoid membrane under the same conditions. Changes in membrane integrity coincided with a precipitous decline in leaf chlorophyll concentration and low survival rates in wild type plants. Cold-induced double transgenic N. alata (cv. Domino Mix) plants, harboring both the cor15a-FAD7 cold-tolerance gene and a cor15a-IPT dark-tolerance gene, exhibited dramatically higher survival rates (89-90%) than wild type plants (2%) under prolonged cold storage under dark conditions (2 degrees C for 50 days).
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.
Resumo:
Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.
Resumo:
The development of the seasonal phytoplankton bloom in the Ross Sea was studied during two cruises. The first, conducted in November-December 1994, investigated the initiation and rapid growth of the bloom, whereas the second (December 1995-January 1996) concentrated on the bloom's maximum biomass period and the subsequent decline in biomass. Central to the understanding of the controls of growth and the summer decline of the bloom is a quantitative assessment of the growth rate of phytoplankton. Growth rates were estimated over two time scales with different methods. The first estimated daily growth rates from isotropic incorporation under simulated in situ conditions, including 14C, 15N and 32Si uptake measurements combined with estimates of standing stocks of particulate organic carbon, nitrogen and biogenic silica. The second method used daily to weekly changes in biomass at selected locations, with net growth rates being estimated from changes in standing stocks of phytoplankton. In addition, growth rates were estimated in large-volume experiments under optimal irradiances. Growth rates showed distinct temporal patterns. Early in the growing season, short-term estimates suggested that growth rates of in situ assemblages were less than maximum (relative to the temperature-limited maximum) and were likely reduced due to low irradiance regimes encountered under the ice. Growth rates increased thereafter and appeared to reach their maximum as biomass approached the seasonal peak, but decreased markedly in late December. Differences between the major taxonomic groups present were also noted, especially from the isotopic tracer experiments. The haplophyte Phaeocystic antarctica was dominant in 1994 throughout the growing season, and it exhibited the greatest growth rates (mean 0.41/day) during spring. Diatom standing stocks were low early in the growing season, and growth rates averaged 0.100/day. In summer diatoms were more abundant, but their growth rates remained much lower (mean of 0.08/day) than the potential maximum. Understanding growth rate controls is essential to the development of predictive models of the carbon cycle and food webs in Antarctic waters.
Resumo:
In order to investigate the diversity of diet composition in macrobenthic peracarid crustaceans from the Antarctic shelf and deep sea, the fatty acid (FA) composition of different species belonging to the orders Isopoda, Amphipoda, Cumacea and Tanaidacea was analysed. Multivariate analyses of the FA composition confirmed general differences between the orders, but also distinct differences within these orders. To gain information on the origin of the FAs found, the potential food sources sediment, POM and foraminiferans were included in the study. Most of the analysed amphipod species displayed high 18:1(n-9)-18:1(n-7) ratios, widely used as an indicator for a carnivorous component in the diet. Cumaceans were characterised by increased phytoplankton FA markers such as 20:5(n-3) (up to 29% of total FAs), suggesting a diet based on phytodetritus. High values of the FA 20:4(n-6) were found in some munnopsid isopods (up to 21% of total FAs) and some tanaidacean species (up to 19% of total FAs). 20:4(n-6) also occurred in high proportions in some foraminiferan samples (up to 21% of total fatty acids), but not in sediment and POM, possibly indicating the ingestion of foraminiferans by some peracarid crustaceans.
Resumo:
A field study was conducted in Santala Bay with weekly samplings during February and March 2000. Ice thickness was 20-28 cm, snow cover 0-1 cm. The under-ice water column was stratified with a cold (-0.3 - 0.2°C) and less saline (S = 2.1-4.9) interface layer. Concentrations of particulate organic carbon (0.5-5.8 mg POC/l) and algal pigments (0.3-18.2 µg chlorophyll a/l) were higher in the ice than in the water (0.2-0.5 mg POC/l, 1.6-7.1 µg chlorophyll a/l) and peaked mostly in the bottom part of the ice. The thin ice and almost lacking snow cover had favoured an early ice-algal and phytoplankton bloom. The diversity of metazoans was low, with six species in the ice and eight species in the under-ice water. The rotifer Synchaeta cf. littoralis dominated both in ice and water, with maximum abundances of 230 individuals/l in the bottom part of the ice. Rotifer eggs were also observed in the ice. Baltic sea ice seems to be a suitable habitat for rotifers. Nauplii and copepodids of the calanoid Acartia longiremis in the under-ice water showed some herbivorous feeding (<0.1-0.23 ng gut pigment/individual), but analysis of fatty acids, fatty alcohols and biomarker ratios indicated a more omnivorous/carnivorous diet. Despite low temperatures, this copepod showed growth and development below the ice, doubling in numbers (mainly CI, CII) from 118 to 230 individuals m during the third week of March.
Resumo:
Marine birds are important predators in the marine ecosystem, and dietary studies can give useful information about their feeding ecology, food webs and oceanographic variability. The aim of this study was to increase our understanding of the diet and trophic level of the seabirds breeding in Kongsfjorden, Svalbard. We have used fatty acids and stable isotopes, both of which integrate diet information over space and time, to determine trophic relationships in marine food webs. Fatty acid compositions of muscle from Little auk (Alle alle), Brünnich's guillemot (Uria lomvia), Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis) and Glaucous gull (Larus hyperboreus) were determined and compared with their prey species. Canonical analysis (CA) showed that fatty acid composition differed among the five seabird species. Little auk, Black-legged kittiwake and Northern fulmar had high levels of the Calanus markers 20:1n9 and 22:1, indicating that these seabirds are a part of the Calanus food chain. Brünnich's guillemot differed from the other species with much lower levels of 20:1n9 and 22:1. Brünnich's guillemot is a pursuit diver feeding on fish and amphipods deeper in the water column, below 30 m. Glaucous gull also differed from the other seabird species, with a larger variation in the fatty acid composition indicating a more diverse diet. Trophic level analysis placed Little auk at the lowest trophic level, Brünnich's guillemot and Black-legged kittiwake at intermediate levels and Glaucous gull and Northern fulmar at the highest trophic level.