910 resultados para 010109 Ordinary Differential Equations Difference Equations and Dynamical Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I show a triple new connection we found between quantum integrability, N=2 supersymmetric gauge theories and black holes perturbation theory. I use the approach of the ODE/IM correspondence between Ordinary Differential Equations (ODE) and Integrable Models (IM), first to connect basic integrability functions - the Baxter’s Q, T and Y functions - to the gauge theory periods. This fundamental identification allows several new results for both theories, for example: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of the integrability functional relations as new exact R-symmetry relations for the periods; new formulas for the local integrals of motion in terms of gauge periods. This I develop in all details at least for the SU(2) gauge theory with Nf=0,1,2 matter flavours. Still through to the ODE/IM correspondence, I connect the mathematically precise definition of quasinormal modes of black holes (having an important role in gravitational waves’ obervations) with quantization conditions on the Q, Y functions. In this way I also give a mathematical explanation of the recently found connection between quasinormal modes and N=2 supersymmetric gauge theories. Moreover, it follows a new simple and effective method to numerically compute the quasinormal modes - the TBA - which I compare with other standard methods. The spacetimes for which I show these in all details are in the simplest Nf=0 case the D3 brane in the Nf=1,2 case a generalization of extremal Reissner-Nordström (charged) black holes. Then I begin treating also the Nf=3,4 theories and argue on how our integrability-gauge-gravity correspondence can generalize to other types of black holes in either asymptotically flat (Nf=3) or Anti-de-Sitter (Nf=4) spacetime. Finally I begin to show the extension to a 4-fold correspondence with also Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model of heat transfer in fluidized-bed coating of solid cylinders is presented. By defining suitable dimensionless parameters, the governing equations and its associated initial and boundary conditions are discretized using the method of orthogonal collocation and the resulting ordinary differential equations simultaneously solved for the dimensionless coating thickness and wall temperatures. Parametric Studies showed that the dimensionless coating thickness and wall temperature depend on the relative heat capacities of the polymer powder and object, the latent heat of fusion and the size of the cylinder. Model predictions for the coating thickness and wall temperature compare reasonably well with numerical predictions and experimental coating data in the literature and with our own coating experiments using copper cylinders immersed in nylon-11 and polyethylene powders. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um algoritmo numérico foi criado para apresentar a solução da conversão termoquímica de um combustível sólido. O mesmo foi criado de forma a ser flexível e dependente do mecanismo de reação a ser representado. Para tanto, um sistema das equações características desse tipo de problema foi resolvido através de um método iterativo unido a matemática simbólica. Em função de não linearidades nas equações e por se tratar de pequenas partículas, será aplicado o método de Newton para reduzir o sistema de equações diferenciais parciais (EDP’s) para um sistema de equações diferenciais ordinárias (EDO’s). Tal processo redução é baseado na união desse método iterativo à diferenciação numérica, pois consegue incorporar nas EDO’s resultantes funções analíticas. O modelo reduzido será solucionado numericamente usando-se a técnica do gradiente bi-conjugado (BCG). Tal modelo promete ter taxa de convergência alta, se utilizando de um número baixo de iterações, além de apresentar alta velocidade na apresentação das soluções do novo sistema linear gerado. Além disso, o algoritmo se mostra independente do tamanho da malha constituidora. Para a validação, a massa normalizada será calculada e comparada com valores experimentais de termogravimetria encontrados na literatura, , e um teste com um mecanismo simplificado de reação será realizado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z  Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um problema em aberto na geração de trajectórias em tempo real de robôs. Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção (CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede. Os CPGs são modelados matematicamente por sistemas acoplados de células (ou neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica, (a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada independentemente e adicionada exactamente antes do envio dos sinais para as articulações do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do sinal após a inclusão da parte discreta. Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5]. Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1), considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5ando novamente o oscilador de Hopf, a amplitude e a frequência têm o mesmo comportamento, crescendo e diminuindo nos intervalos de g [-0.5,0.34] e [0.4,1.83], sendo nos restantes valores de g nulas. Isto traduz-se em variações na extensão do movimento e na velocidade do robô, proporcionais à amplitude e à frequência, respectivamente. Ainda com o oscilador Hopf, no caso (b), a frequência mantêm-se constante enquanto a amplitude diminui para g<0.2 e aumenta para g>0.2. A extensão do movimento varia de forma directamente proporcional à amplitude. No caso das equações de Morris-Lecar, quando a componente discreta é embebida (a.2), a amplitude e a frequência aumentam e depois diminuem para - 0.17ando se somam as duas componentes, mais uma vez a frequência mantém-se constante enquanto a amplitude diminui para g<0.5 e aumenta para g>0.5 Pode concluir-se que: (1) a melhor forma de inserção da parte discreta que menos perturbação insere no robô é a inserção como offset; (2) a inserção da parte discreta parece ser independente do sistema de equações diferenciais ordinárias que modelam a dinâmica interna de cada célula. Como trabalho futuro, é importante prosseguir o estudo das diferentes formas de inserção da parte discreta na parte rítmica do movimento, para que se possa gerar uma locomoção quadrúpede, robusta, flexível, com objectivos, em terrenos irregulares, modelada por correcções discretas aos padrões rítmicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a model is developed to describe the three dimensional contact melting process of a cuboid on a heated surface. The mathematical description involves two heat equations (one in the solid and one in the melt), the Navier-Stokes equations for the flow in the melt, a Stefan condition at the phase change interface and a force balance between the weight of the solid and the countering pressure in the melt. In the solid an optimised heat balance integral method is used to approximate the temperature. In the liquid the small aspect ratio allows the Navier-Stokes and heat equations to be simplified considerably so that the liquid pressure may be determined using an igenfunction expansion and finally the problem is reduced to solving three first order ordinary differential equations. Results are presented showing the evolution of the melting process. Further reductions to the system are made to provide simple guidelines concerning the process. Comparison of the solutions with experimental data on the melting of n-octadecane shows excellent agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochemical systems are commonly modelled by systems of ordinary differential equations (ODEs). A particular class of such models called S-systems have recently gained popularity in biochemical system modelling. The parameters of an S-system are usually estimated from time-course profiles. However, finding these estimates is a difficult computational problem. Moreover, although several methods have been recently proposed to solve this problem for ideal profiles, relatively little progress has been reported for noisy profiles. We describe a special feature of a Newton-flow optimisation problem associated with S-system parameter estimation. This enables us to significantly reduce the search space, and also lends itself to parameter estimation for noisy data. We illustrate the applicability of our method by applying it to noisy time-course data synthetically produced from previously published 4- and 30-dimensional S-systems. In addition, we propose an extension of our method that allows the detection of network topologies for small S-systems. We introduce a new method for estimating S-system parameters from time-course profiles. We show that the performance of this method compares favorably with competing methods for ideal profiles, and that it also allows the determination of parameters for noisy profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is developed. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-equation sets associated with the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for interfacial pattern selection.