949 resultados para vibration active control
Resumo:
This doctoral thesis introduces an improved control principle for active du/dt output filtering in variable-speed AC drives, together with performance comparisons with previous filtering methods. The effects of power semiconductor nonlinearities on the output filtering performance are investigated. The nonlinearities include the timing deviation and the voltage pulse waveform distortion in the variable-speed AC drive output bridge. Active du/dt output filtering (ADUDT) is a method to mitigate motor overvoltages in variable-speed AC drives with long motor cables. It is a quite recent addition to the du/dt reduction methods available. This thesis improves on the existing control method for the filter, and concentrates on the lowvoltage (below 1 kV AC) two-level voltage-source inverter implementation of the method. The ADUDT uses narrow voltage pulses having a duration in the order of a microsecond from an IGBT (insulated gate bipolar transistor) inverter to control the output voltage of a tuned LC filter circuit. The filter output voltage has thus increased slope transition times at the rising and falling edges, with an opportunity of no overshoot. The effect of the longer slope transition times is a reduction in the du/dt of the voltage fed to the motor cable. Lower du/dt values result in a reduction in the overvoltage effects on the motor terminals. Compared with traditional output filtering methods to accomplish this task, the active du/dt filtering provides lower inductance values and a smaller physical size of the filter itself. The filter circuit weight can also be reduced. However, the power semiconductor nonlinearities skew the filter control pulse pattern, resulting in control deviation. This deviation introduces unwanted overshoot and resonance in the filter. The controlmethod proposed in this thesis is able to directly compensate for the dead time-induced zero-current clamping (ZCC) effect in the pulse pattern. It gives more flexibility to the pattern structure, which could help in the timing deviation compensation design. Previous studies have shown that when a motor load current flows in the filter circuit and the inverter, the phase leg blanking times distort the voltage pulse sequence fed to the filter input. These blanking times are caused by excessively large dead time values between the IGBT control pulses. Moreover, the various switching timing distortions, present in realworld electronics when operating with a microsecond timescale, bring additional skew to the control. Left uncompensated, this results in distortion of the filter input voltage and a filter self-induced overvoltage in the form of an overshoot. This overshoot adds to the voltage appearing at the motor terminals, thus increasing the transient voltage amplitude at the motor. This doctoral thesis investigates the magnitude of such timing deviation effects. If the motor load current is left uncompensated in the control, the filter output voltage can overshoot up to double the input voltage amplitude. IGBT nonlinearities were observed to cause a smaller overshoot, in the order of 30%. This thesis introduces an improved ADUDT control method that is able to compensate for phase leg blanking times, giving flexibility to the pulse pattern structure and dead times. The control method is still sensitive to timing deviations, and their effect is investigated. A simple approach of using a fixed delay compensation value was tried in the test setup measurements. The ADUDT method with the new control algorithm was found to work in an actual motor drive application. Judging by the simulation results, with the delay compensation, the method should ultimately enable an output voltage performance and a du/dt reduction that are free from residual overshoot effects. The proposed control algorithm is not strictly required for successful ADUDT operation: It is possible to precalculate the pulse patterns by iteration and then for instance store them into a look-up table inside the control electronics. Rather, the newly developed control method is a mathematical tool for solving the ADUDT control pulses. It does not contain the timing deviation compensation (from the logic-level command to the phase leg output voltage), and as such is not able to remove the timing deviation effects that cause error and overshoot in the filter. When the timing deviation compensation has to be tuned-in in the control pattern, the precalculated iteration method could prove simpler and equally good (or even better) compared with the mathematical solution with a separate timing compensation module. One of the key findings in this thesis is the conclusion that the correctness of the pulse pattern structure, in the sense of ZCC and predicted pulse timings, cannot be separated from the timing deviations. The usefulness of the correctly calculated pattern is reduced by the voltage edge timing errors. The doctoral thesis provides an introductory background chapter on variable-speed AC drives and the problem of motor overvoltages and takes a look at traditional solutions for overvoltage mitigation. Previous results related to the active du/dt filtering are discussed. The basic operation principle and design of the filter have been studied previously. The effect of load current in the filter and the basic idea of compensation have been presented in the past. However, there was no direct way of including the dead time in the control (except for solving the pulse pattern manually by iteration), and the magnitude of nonlinearity effects had not been investigated. The enhanced control principle with the dead time handling capability and a case study of the test setup timing deviations are the main contributions of this doctoral thesis. The simulation and experimental setup results show that the proposed control method can be used in an actual drive. Loss measurements and a comparison of active du/dt output filtering with traditional output filtering methods are also presented in the work. Two different ADUDT filter designs are included, with ferrite core and air core inductors. Other filters included in the tests were a passive du/dtfilter and a passive sine filter. The loss measurements incorporated a silicon carbide diode-equipped IGBT module, and the results show lower losses with these new device technologies. The new control principle was measured in a 43 A load current motor drive system and was able to bring the filter output peak voltage from 980 V (the previous control principle) down to 680 V in a 540 V average DC link voltage variable-speed drive. A 200 m motor cable was used, and the filter losses for the active du/dt methods were 111W–126 W versus 184 W for the passive du/dt. In terms of inverter and filter losses, the active du/dt filtering method had a 1.82-fold increase in losses compared with an all-passive traditional du/dt output filter. The filter mass with the active du/dt method was 17% (2.4 kg, air-core inductors) compared with 14 kg of the passive du/dt method filter. Silicon carbide freewheeling diodes were found to reduce the inverter losses in the active du/dt filtering by 18% compared with the same IGBT module with silicon diodes. For a 200 m cable length, the average peak voltage at the motor terminals was 1050 V with no filter, 960 V for the all-passive du/dt filter, and 700 V for the active du/dt filtering applying the new control principle.
Resumo:
The weed Borreria densiflora is a management issue in soybean and sugarcane crops from North and Northeastern Brazil. Knowledge upon chemical control of B. densiflora contributes to the integrated management of this weed species, especially when active ingredient options become reduced due to the selection of herbicide resistant or tolerant weed species. Experiments in pre- and post-emergence of B. densiflora were conducted in greenhouse, in a randomized block design and four replications. In pre-emergence, the dose-response curve methodology was used and 7 herbicides were tested. In post-emergence, 9 herbicides at the recommended rate and 4 herbicide mixtures were tested. For pre and post-emergence conditions, evaluations were conducted at 60 and 21 days after treatment (DAT), respectively, and the variables analyzed were weed control and dry weight (%). The results showed options of pre-emergent herbicides that can be used for controlling B. densiflora, especially in sugarcane, where chemical weed control is mainly based on pre-emergent applications. In the current glyphosate resistance scenario, one should consider the use of pre-emergent herbicides within an integrated management of B. densiflora. For satisfactory post-emergence control, B. densiflora plants should be sprayed at the phenological stage of up to three pairs of leaves. Herbicide mixtures have been and will continue to be an important tool in chemical weed management, broadening the spectrum of weed control, while diversifying herbicide mechanisms of action, which helps to prevent or delay the appearance of herbicide resistance.
Resumo:
The objective of this study was to evaluate the efficiency of application and the efficacy of control of water hyacinth (Eichhornia crassipes) with the use of the diquat herbicide done with two application volumes associated to three droplets classes. Three experiments were conducted; in the first, the application efficiency was evaluated; in the second, the control efficiency and; in the third, the droplet spectrum. They were conducted in a completely randomized design with five, four and six replicates, respectively. The treatments were arranged in a 2 x 3 factorial design, with two application volumes (100 and 200 L ha-1) and three droplets classes (fine, extremely coarse and ultra-coarse) to the first and second experiment and the third comprised two diquat concentrations in spray solution (2 and 4 g i.a. L-1) and three droplets classes (fine, extremely coarse and ultra-coarse). The application efficiency was determined by the coverage by droplets, spray deposition and active ingredient of the herbicide (diquat). The efficacy was measured by the control and the percentage of plants with regrowth at 50 days after application. The spectrum of droplets produced per each nozzle model used to obtain the droplets classes were analyzed. According to the parameters analyzed, using the droplets classes extremely thick and ultra thick can provide greater certainty in the application of diquat in the aquatic environment associated with the deposition of the active and sufficient coverage to control Eichhornia crassipes with both application volumes
Resumo:
This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.
Resumo:
Neurocysticercosis (NCC) is a common neurological disorder especially in developing countries, caused by infection of the brain with encysted larvae of the tapeworm Taenia solium. Seizures are a common finding associated with this disease. The objective of the present study was to evaluate the correlation between the levels of various cytokines present in the cerebrospinal fluid (CSF) of patients with NCC and the severity of the disease. The levels of the cytokines IL-1ß, TNF-alpha, IL-5, IL-10 and IFN-gamma were determined in the CSF of 22 patients with active NCC, 13 patients with inactive NCC and 15 control subjects. CSF from patients with active NCC presented significantly higher IL-5 levels compared to control subjects. IL-5 and IL-10 levels in CSF from NCC patients with inflammatory CSF were significantly higher than those detected in non-inflammatory CSF. These results show a predominant Th2 lymphocyte activation in human NCC and also indicate the possible use of cytokines in the CSF as a marker for the differential diagnosis between inactive disease and the active form of NCC.
Resumo:
The effects of the aging process and an active life-style on the autonomic control of heart rate (HR) were investigated in nine young sedentary (YS, 23 ± 2.4 years), 16 young active (YA, 22 ± 2.1 years), 8 older sedentary (OS, 63 ± 2.4 years) and 8 older active (OA, 61 ± 1.1 years) healthy men. Electrocardiogram was continuously recorded for 15 min at rest and for 4 min in the deep breathing test, with a breath rate of 5 to 6 cycles/min in the supine position. Resting HR and RR intervals were analyzed by time (RMSSD index) and frequency domain methods. The power spectral components are reported in normalized units (nu) at low (LF) and high (HF) frequency, and as the LF/HF ratio. The deep breathing test was analyzed by the respiratory sinus arrhythmia indices: expiration/inspiration ratio (E/I) and inspiration-expiration difference (deltaIE). The active groups had lower HR and higher RMSSD index than the sedentary groups (life-style condition: sedentary vs active, P < 0.05). The older groups showed lower HFnu, higher LFnu and higher LF/HF ratio than the young groups (aging effect: young vs older, P < 0.05). The OS group had a lower E/I ratio (1.16) and deltaIE (9.7 bpm) than the other groups studied (YS: 1.38, 22.4 bpm; YA: 1.40, 21.3 bpm; OA: 1.38, 18.5 bpm). The interaction between aging and life-style effects had a P < 0.05. These results suggest that aging reduces HR variability. However, regular physical activity positively affects vagal activity on the heart and consequently attenuates the effects of aging in the autonomic control of HR.
Resumo:
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.
Resumo:
Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.
Resumo:
The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P < 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. Moreover, immunoblot assays did not provide evidence for an enhanced activation of the three mitogen-activated protein kinases studied in this stage of hypertrophy. Therefore, these findings indicate that chronic cardiac α1B-AR activation in vivo led to mild hypertrophy devoid of significant signs of adaptive modifications concerning primary intracellular calcium control and growth-related proteins, suggesting a minor pathophysiological role of this adrenergic receptor in mouse heart at this stage of development.
Resumo:
The aim of this study was to investigate the effect of adding whole-body vibration (WBV; frequency = 35 to 40 Hz; amplitude = 4 mm) to squat training on the T-cell proliferative response of elderly patients with osteoarthritis (OA) of the knee. This study was a randomized controlled trial in which the selected variables were assessed before and after 12 weeks of training. Twenty-six subjects (72 ± 5 years of age) were divided into three groups: 1) squat training with WBV (WBV, N = 8); 2) squat training without WBV (N = 10), and 3) a control group (N = 8). Women who were ≥60 years of age and had been diagnosed with OA in at least one knee were eligible. The intervention consisted of 12 uninterrupted weeks of squatting exercise training performed 3 times/week. Peripheral blood mononuclear cells were obtained from peripheral blood collected before and after training. The proliferation of TCD4+ and TCD8+ cells was evaluated by flow cytometry measuring the carboxyfluorescein succinimidyl ester fluorescence decay before and after the intervention (∆). The proliferative response of TCD4+ cells (P = 0.02, effect size = 1.0) showed a significant decrease (23%) in the WBV group compared to the control group, while there was no difference between groups regarding the proliferative response of TCD8+ cells (P = 0.12, effect size = 2.23). The data suggest that the addition of WBV to squat exercise training might modulate T-cell-mediated immunity, minimizing or slowing disease progression in elderly patients with OA of the knee.
Resumo:
Regular physical exercise has been shown to favorably influence mood and anxiety; however, there are few studies regarding psychiatric aspects of physically active patients with coronary artery disease (CAD). The objective of the present study was to compare the prevalence of psychiatric disorders and cardiac anxiety in sedentary and exercising CAD patients. A total sample of 119 CAD patients (74 men) were enrolled in a case-control study. The subjects were interviewed to identify psychiatric disorders and responded to the Cardiac Anxiety Questionnaire. In the exercise group (N = 60), there was a lower prevalence (45 vs 81%; P < 0.001) of at least one psychiatric diagnosis, as well as multiple comorbidities, when compared to the sedentary group (N = 59). Considering the Cardiac Anxiety Questionnaire, sedentary patients presented higher scores compared to exercisers (mean ± SEM = 55.8 ± 1.9 vs 37.3 ± 1.6; P < 0.001). In a regression model, to be attending a medically supervised exercise program presented a relevant potential for a 35% reduction in cardiac anxiety. CAD patients regularly attending an exercise program presented less current psychiatric diagnoses and multiple mental-related comorbidities and lower scores of cardiac anxiety. These salutary mental effects add to the already known health benefits of exercise for CAD patients.
Resumo:
The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0) to L* = 45.3 and Hue angle = 69.8° (t = 3 days), whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0°) to (L* = 67.0; Hue angle = 83.8°) within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.
Resumo:
Active magnetic bearing is a type of bearing which uses magnetic field to levitate the rotor. These bearings require continuous control of the currents in electromagnets and data from position of the rotor and the measured current from electromagnets. Because of this different identification methods can be implemented with no additional hardware. In this thesis the focus was to implement and test identification methods for active magnetic bearing system and to update the rotor model. Magnetic center calibration is a method used to locate the magnetic center of the rotor. Rotor model identification is an identification method used to identify the rotor model. Rotor model update is a method used to update the rotor model based on identification data. These methods were implemented and tested with a real machine where rotor was levitated with active magnetic bearings and the functionality of the methods was ensured. Methods were developed with further extension in mind and also with the possibility to apply them for different machines with ease.
Resumo:
An ascending cholinergic projection, which originates in the laterodorsal tegmental nucleus (LDT), was implicated in the initiation of ultrasonic vocalization. The goal of this study was to histochemically examine the activity the LDT following ultrasonic calls induced by two methods. It was hypothesized that cholinergic LDT cells would be more active during air puffinduced vocalization than carbachol-induced one. Choline acetyltransferase (ChAT), and cFos protein were visualized histochemically as markers of cholinergic calls and cellular activity, respectively. Results indicated that animals vocalizing after carbachol, but not after air puff, had a significantly higher number of Fos labeled nuclei within the LDT than non vocalizing controls. A significantly higher number of doublelabeled neurons were discovered in the LDT of vocalizing animals (in both groups) as compared to control conditions. Thus, there were significantly more active cholinergic cells in the LDT of vocalizing than non-vocalizing rats for both methods of call induction.
Resumo:
The Active Isolated Stretching (AIS) technique proposes that by contracting a muscle (agonist) the opposite muscle (antagonist) will relax through reciprocal inhibition and lengthen without increasing muscle tension (Mattes, 2000). The clinical effectiveness of AIS has been reported but its mechanism of action has not been investigated at the tissue level. Proposed mechanisms for increased range of motion (ROM) include mechanical or neural changes, or an increased stretch tolerance. The purpose of the study was to investigate changes in mechanical properties, i.e. stiffness, of skeletal muscle in response to acute and long-term AIS stretching for the hamstring muscle group. Recreationally active university-aged students (female n=8, male n=2) classified as having tight hamstrings, by a knee extension test, volunteered for the study. All stretch procedures were performed on the right leg, with the left leg serving as a control. Each subject was assessed twice: at an initial session and after completing a 6-week AIS hamstring stretch training program. For both test sessions active knee extension (ROM) to a position of "light irritation", passive resisted torque and stiffness were determined before and after completion of the AIS technique (2x10 reps). Data were collected using a Biodex System 3 Pro (Biodex Medical Systems, NY, USA) isokinetic dynamometer. Surface electromyography (EMG) was used to monitor vastus lateralis (VL) and hamstring muscle activity during the stretching movements. Between test sessions, 2x10 reps of the AIS bent knee hamstring stretch were performed daily for 6-weeks.