480 resultados para vertebra malformation
Resumo:
La labioschisi con o senza palatoschisi non-sindromica (NSCL/P) è tra le più frequenti alterazioni dello sviluppo embrionale, causata dall’interazione di fattori genetici e ambientali, moti dei quali ancora ignoti. L'obiettivo del mio progetto di Dottorato consiste nell’identificazione di fattori di rischio genetico in un processo a due stadi che prevede la selezione di geni candidati e la verifica del loro coinvolgimento nella determinazione della malformazione mediante studi di associazione. Ho analizzato alcuni polimorfismi a singolo nucleotide (SNPs) dei geni RFC1 e DHFR, appartenenti alla via metabolica dell’acido folico, evidenziando una debole associazione tra alcuni degli SNPs indagati e la NSCL/P nella popolazione italiana. Presso il laboratorio della Dott.ssa Mangold dell’Università di Bonn, ho valutato il ruolo di 15 diverse regioni cromosomiche nel determinare la suscettibilità alla malattia, evidenziando una significativa associazione per i marcatori localizzati in 8q24 e 1p22. Ho quindi rivolto la mia attenzione al ruolo del complesso Polycomb nell’insorgenza della schisi. Nell’uomo i due complessi Polycomb, PRC1 e PRC2, rimodellano la cromatina agendo da regolatori dei meccanismi trascrizionali alla base della differenziazione cellulare e dello sviluppo embrionale. Ho ipotizzato che mutazioni a carico di geni appartenenti a PRC2 possano essere considerati potenziali fattori di rischio genetico nel determinare la NSCL/P. Il razionale consiste nel fatto che JARID2, una proteina che interagisce con PRC2, è associata all’insorgenza della NSCL/P ed espressa a livello delle cellule epiteliali delle lamine palatine che si approssimano alla fusione. L’indagine condotta analizzando i geni di elementi o partner dei due complessi Polycomb, ha evidenziato un’associazione significativa con alcuni polimorfismi dei geni indagati, associazione ulteriormente confermata dall’analisi degli aplotipi. Le analisi condotte sui geni candidati mi hanno permesso di raccogliere dati interessanti sull’eziologia della malformazione. Studi indipendenti saranno necessari per poter validare l'associazione tra le varianti genetiche di questi geni candidati e la NSCL/P.
Resumo:
La Digital Volume Correlation (DVC) è una tecnica di misura a tutto campo, non invasiva, che permette di misurare spostamenti e deformazioni all’interno della struttura ossea in esame. Mediante la comparazione d’immagini con provino scarico e con provino carico, ottenute attraverso sistemi di tomografia computerizzata, si può ottenere la mappa degli spostamenti per ogni direzione e la mappa di deformazione per ogni componente di deformazione. L’obiettivo di questo lavoro di tesi è la validazione della DVC, attraverso la determinazione dell’errore sistematico (accuratezza) e dell’errore casuale (precisione), in modo da poter valutare il livello di affidabilità della strumentazione. La valutazione si effettua su provini di vertebre di maiale, aumentate e non, sia a livello d’organo, sia a livello di tessuto. The Digital Volume Correlation (DVC) is a full field and contact less measurement technique that allowed estimating displacement and strain inside bone specimen. Images of the unloaded and loaded specimen were obtained from micro-CT and compared in order to obtain the displacement map and, differentiating, the strain map. The aim of this work is the validation of the approach, estimating the lack of accuracy (systematic error) and the lack of precision (random error) on different kinds of porcine vertebra, augmented and not, analysing the specimen on tissue level and on organ level.
Resumo:
Joubert syndrome (JS) is an autosomal-recessive inherited complex malformation of the midbrain-hindbrain. It has been associated with ocular and oculomotor abnormalities. The aim of our study was to extend the ophthalmic knowledge in JS and to add new findings.
Resumo:
Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.
Resumo:
Aberrant origin of a pulmonary artery from the ascending aorta is an uncommon congenital vascular malformation with poor survival without surgery. In this case report, we describe the unusual late diagnosis of this congenital malformation in an otherwise asymptomatic young man presenting with mild hemoptysis. We review the natural and modified history of this defect and the relevant aspects of follow-up in adult life.
Resumo:
Fetal echocardiography was initially used to diagnose structural heart disease, but recent interest has focused on functional assessment. Effects of extracardiac conditions on the cardiac function such as volume overload (in the recipient in twin-twin transfusion syndrome), a hyperdynamic circulation (arterio-venous malformation), cardiac compression (diaphragmatic hernia, lung tumours) and increased placental resistance (intrauterine growth restriction and placental insufficiency) can be studied by ultrasound and may guide decisions for intervention or delivery. A variety of functional tests can be used, but there is no single clinical standard. For some specific conditions, however, certain tests have shown diagnostic value.
Resumo:
This review covers the surgery for the bone-anchored hearing aid (Baha(®)). PREOPERATIVE WORKUP: A review of the indications and preoperative diagnostics shows that best results are generally obtained in patients with conductive or mixed hearing loss rehabilitation when surgery is not applicable or has failed and in patients that suffer from single-sided deafness. An audiogram must confirm that the bone conduction hearing is within the inclusion criteria. A computed tomography scan is performed in cases of malformation to assure sufficient bone thickness at the site of screw implantation.
Resumo:
Anatomical variability within the autonomic nervous system has long been accepted. This study evaluated the anatomical variability of the cervicothoracic ganglion (CTG) according to its form and, in addition, provided precise measurements between the CTG and the anterior tubercle of the transverse process of the sixth cervical vertebra (C6TP), the first costovertebral articulation, and the vertebral artery. Forty-two adult cadavers were dissected, 22 male and 20 females. Five main forms of CTG were documented; spindle (31.9%), dumbbell (23.2%), truncated (21.7%), perforated (14.5%), and inverted-L (8.7%). The means for length, width, and thickness of the CTG were 18.5 mm, 8.2 mm, and 4.5 mm, respectively. The dimensions were found to be slightly larger in the males than females and on the left sides as compared to the right. The mean shortest distance between the CTGs and the vertebral artery was found to be 2.8 mm, whilst the mean shortest distances to C6TP was 25.7 mm and to the first costovertebral articulation was 1.7 mm. There is great variability in the morphology of the CTG with five common forms consistently seen. The relation to the vertebral artery may influence the form of the ganglion. Two previously undocumented forms are recorded; the truncated which describes the important juxtaposition of the CTG and the vertebral artery and the perforated which describes the piercing of the ganglion itself by the artery. The findings are considered to be of clinical importance to anesthetists, surgeons, neurosurgeons, and anatomists.
Resumo:
Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.
Resumo:
OPINION STATEMENT: • In acute spinal cord ischemia syndrome (ASCIS), treatment recommendations are derived from data of cerebral ischemic stroke, atherosclerotic vascular disease and acute spinal cord injury. Besides acute management, secondary prevention is of major importance. Pathologies affecting the aorta as well as underlying cerebrovascular conditions should be treated whenever possible.• ASCIS may occur after aortic surgery, less often after thoracic endovascular aortic repair (TEVAR). Protocols are proposed.• Acute spinal cord hemorrhage can be treated surgically and/or pharmacologically.• Symptomatic treatment in patients with a spinal cord lesion is of major importance. Depending on level and extension of the lesion, there is a risk for systemic and neurological complications, which may be life-threatening.• Each spinal vascular malformation is a unique lesion that needs an individualized treatment algorithm. In case of a symptomatic vascular malformation, endovascular intervention is the primary treatment option.• Spinal dural Arteriovenous fistula (AVF) may be treated endovascularly or surgically. If preoperative localization of the fistula is possible, surgery is feasible with a low complication rate. In comparison, endovascular approaches are less invasive.• Spinal AVM are rather treated endovascularly than surgically or in a stepwise multidisciplinary approach.• Symptomatic and exophytic spinal cavernous angiomas should be treated surgically. Deep spinal cavernous angiomas that are asymptomatic or only show mild symptoms can be observed.
Resumo:
The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.
Resumo:
OBJECTIVES: Aim of this study was to compare the utility of susceptibility weighted imaging (SWI) with the established diagnostic techniques CT and fluid attenuated inversion recovery (FLAIR) in their detecting capacity of subarachnoid hemorrhage (SAH), and further to compare the combined SWI/FLAIR MRI data with CT to evaluate whether MRI is more accurate than CT. METHODS: Twenty-five patients with acute SAH underwent CT and MRI within 6 days after symptom onset. Underlying pathology for SAH was head trauma (n=9), ruptured aneurysm (n=6), ruptured arteriovenous malformation (n=2), and spontaneous bleeding (n=8). SWI, FLAIR, and CT data were analyzed. The anatomical distribution of SAH was subdivided into 8 subarachnoid regions with three peripheral cisterns (frontal-parietal, temporal-occipital, sylvian), two central cisterns and spaces (interhemispheric, intraventricular), and the perimesencephalic, posterior fossa, superior cerebellar cisterns. RESULTS: SAH was detected in a total of 146 subarachnoid regions. CT identified 110 (75.3%), FLAIR 127 (87%), and SWI 129 (88.4%) involved regions. Combined FLAIR and SWI identified all 146 detectable regions (100%). FLAIR was sensitive for frontal-parietal, temporal-occipital and Sylvian cistern SAH, while SWI was particularly sensitive for interhemispheric and intraventricular hemorrhage. CONCLUSIONS: By combining SWI and FLAIR, MRI yields a distinctly higher detection rate for SAH than CT alone, particularly due to their complementary detection characteristics in different anatomical regions. Detection strength of SWI is high in central areas, whereas FLAIR shows a better detection rate in peripheral areas.
Resumo:
Persistent left superior vena cava (LSVC) is a relatively frequent finding in congenital cardiac malformation. The scope of the study was to analyze the timing of diagnosis of persistent LSVC, the timing of diagnosis of associated anomalies of the coronary sinus, and the global impact on morbidity and mortality of persistent LSVC in children with congenital heart disease after cardiac surgery. Retrospective analysis of a cohort of children after cardiac surgery on bypass for congenital heart disease. Three hundred seventy-one patients were included in the study, and their median age was 2.75 years (IQR 0.65-6.63). Forty-seven children had persistent LSVC (12.7 %), and persistent LSVC was identified on echocardiography before surgery in 39 patients (83 %). In three patients (6.4 %) with persistent LSVC, significant inflow obstruction of the left ventricle developed after surgery leading to low output syndrome or secondary pulmonary hypertension. In eight patients (17 %), persistent LSVC was associated with a partially or completely unroofed coronary sinus and in two cases (4 %) with coronary sinus ostial atresia. Duration of mechanical ventilation was significantly shorter in the control group (1.2 vs. 3.0 days, p = 0.04), whereas length of stay in intensive care did not differ. Mortality was also significantly lower in the control group (2.5 vs. 10.6 %, p = 0.004). The results of study show that persistent LSVC in association with congenital cardiac malformation increases the risk of mortality in children with cardiac surgery on cardiopulmonary bypass. Recognition of a persistent LSVC and its associated anomalies is mandatory to avoid complications during or after cardiac surgery.
Resumo:
A black and white German Holstein calf displayed a complex double malformation in shape of a thoracopagus parasiticus. By means of a molecular genetic investigation the genesis of the malformation from one zygote could be demonstrated. Both vertebral columns showed a pronounced lordosis, with the vertebral column of one animal ending in a rudimentary head. Close to this rudiment two derivates of branchial arches were found. The two thoracic cavities merged into one "thorax". In the shared thoracic cavity one heart was found. In its right atrium, a cherry-sized structure was found in which heart- and vascular smooth muscles were demonstrated histologically. The aorta split shortly after its origin to provide both animals with one aorta each. The larger pair of lungs was connected with a trachea leading to the head while the smaller pair of lungs originated from a trachea deriving from the rudimentary head. The diaphragm jejunum and split afterwards. The pedigree of the affected animal showed neither inbreeding nor any other affected animal.
Resumo:
Cement augmentation using PMMA cement is known as an efficient treatment for osteoporotic vertebral compression fractures with a rapid release of pain in most patients and prevention of an ongoing kyphotic deformity of the vertebrae treated. However, after a vertebroplasty there is no chance to restore vertebral height. Using the technique of kyphoplasty a certain restoration of vertebral body height can be achieved. But there is a limitation of recovery due to loss of correction when deflating the kyphoplastic ballon and before injecting the cement. In addition, the instruments used are quite expensive. Lordoplasty is another technique to restore kyphosis by indirect fracture reduction as it is used with an internal fixateur. The fractured and the adjacent vertebrae are instrumented with bone cannulas bipediculary and the adjacent vertebrae are augmentated with cement. After curing of the cement the fractured vertebra is reduced by applying a lordotic moment via the cannulas. While maintaining the pretension the fractured vertebra is reinforced. We performed a prospective trial of 26 patients with a lordoplastic procedure. There was a pain relief of about 87% and a significant decrease in VAS value from 7.3 to 1.9. Due to lordoplasty there was a significant and permanent correction in vertebral and segmental kyphotic angle about 15.2 degrees and 10.0 degrees , respectively and also a significant restoration in anterior and mid vertebral height. Lordoplasty is a minimal invasive technique to restore vertebral body height. An immediate relief of pain is achieved in most patients. The procedure is safe and cost effective.