981 resultados para validation process
Resumo:
Background: Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by ERBB2 (HER-2/neu) oncogene expression. Results: The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of ERBB2-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of ERBB2. The relative expression balance between AS variants from 3 genes was differentially modulated by ERBB2 in this model system. Conclusions: In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by ERBB2-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.
Resumo:
The study of collections from the RB herbarium in Rio de Janeiro. Brazil, allows the lectotypification of three names in the Asteraceae: Baccharis xhoelmeana Teodoro, B. xpaulopolitana Teodoro & W. Hoehne, and B. x wilsoniana Teodoro. Additionally, the name B. lymanii G. M. Barroso ex G. Heiden is validated by the indication of a holotype.
Resumo:
The efficacy of fluorescence spectroscopy to detect squamous cell carcinoma is evaluated in an animal model following laser excitation at 442 and 532 nm. Lesions are chemically induced with a topical DMBA application at the left lateral tongue of Golden Syrian hamsters. The animals are investigated every 2 weeks after the 4th week of induction until a total of 26 weeks. The right lateral tongue of each animal is considered as a control site (normal contralateral tissue) and the induced lesions are analyzed as a set of points covering the entire clinically detectable area. Based on fluorescence spectral differences, four indices are determined to discriminate normal and carcinoma tissues, based on intraspectral analysis. The spectral data are also analyzed using a multivariate data analysis and the results are compared with histology as the diagnostic gold standard. The best result achieved is for blue excitation using the KNN (K-nearest neighbor, a interspectral analysis) algorithm with a sensitivity of 95.7% and a specificity of 91.6%. These high indices indicate that fluorescence spectroscopy may constitute a fast noninvasive auxiliary tool for diagnostic of cancer within the oral cavity. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
In the Hammersley-Aldous-Diaconis process, infinitely many particles sit in R and at most one particle is allowed at each position. A particle at x, whose nearest neighbor to the right is at y, jumps at rate y - x to a position uniformly distributed in the interval (x, y). The basic coupling between trajectories with different initial configuration induces a process with different classes of particles. We show that the invariant measures for the two-class process can be obtained as follows. First, a stationary M/M/1 queue is constructed as a function of two homogeneous Poisson processes, the arrivals with rate, and the (attempted) services with rate rho > lambda Then put first class particles at the instants of departures (effective services) and second class particles at the instants of unused services. The procedure is generalized for the n-class case by using n - 1 queues in tandem with n - 1 priority types of customers. A multi-line process is introduced; it consists of a coupling (different from Liggett's basic coupling), having as invariant measure the product of Poisson processes. The definition of the multi-line process involves the dual points of the space-time Poisson process used in the graphical construction of the reversed process. The coupled process is a transformation of the multi-line process and its invariant measure is the transformation described above of the product measure.
Resumo:
Based on solvation studies of polymers, the sum (1: 1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel ""two-parameter"" solvent polarity scale.
Resumo:
This work presents a novel way to introduce gold nanoparticles (Au NPs) in a multilayer polymer produced by the layer-by-layer (LbL) assembling technique. The technique chosen shows that, depending on the pH used, different morphological structures can be obtained from monolayer or bilayer Au NPs. The MEIS and RBS techniques allowed for the modelling of the interface polymer-NPs, as well as the understanding of the interaction of LbL system, when adjusting the pH in weak polyelectrolytes. The process reveals that the optical properties of multilayer systems could be fine-tuned by controlling the addition of metallic nanoparticles, which could also modify specific polarization responses.
Resumo:
Background: Mutations in TP53 are common events during carcinogenesis. In addition to gene mutations, several reports have focused on TP53 polymorphisms as risk factors for malignant disease. Many studies have highlighted that the status of the TP53 codon 72 polymorphism could influence cancer susceptibility. However, the results have been inconsistent and various methodological features can contribute to departures from Hardy-Weinberg equilibrium, a condition that may influence the disease risk estimates. The most widely accepted method of detecting genotyping error is to confirm genotypes by sequencing and/or via a separate method. Results: We developed two new genotyping methods for TP53 codon 72 polymorphism detection: Denaturing High Performance Liquid Chromatography (DHPLC) and Dot Blot hybridization. These methods were compared with Restriction Fragment Length Polymorphism (RFLP) using two different restriction enzymes. We observed high agreement among all methodologies assayed. Dot-blot hybridization and DHPLC results were more highly concordant with each other than when either of these methods was compared with RFLP. Conclusions: Although variations may occur, our results indicate that DHPLC and Dot Blot hybridization can be used as reliable screening methods for TP53 codon 72 polymorphism detection, especially in molecular epidemiologic studies, where high throughput methodologies are required.
Resumo:
Soil as an impurity in sugarcane is a serious problem for the ethanol industry, increasing production and maintenance costs and reducing the productivity. Fe, Hf, Sc and Th determined by INAA were used as tracers to assess the amount of soil in sugarcane from truckloads as well as in the juice extraction process. Quality control tools were applied to results identifying the need for stratification according to soil type and moisture. Soil levels of truckloads had high variability indicating potential for improving cut and loading operations. Samples from the juice extraction process allowed tracking the soil in the mill tandem.
Resumo:
Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.
Resumo:
The study and understanding of alterations taking place during the micropropagation process can provide valuable information about this technology. The objective of this work was to evaluate the anatomical modifications in leaves of micropropagated banana (Musa spp.) plants during their adaptation to ex vitro conditions. Aseptic axillary shoots of `Preciosa` cultivar (AAAB) were rooted for 24 days in MS medium containing NAA (1mg.l(-1)) and agar (6g.l(-1)), and acclimatized for 120 days. The treatments consisted of leaves at different stages of development: T1 - leaves from plants at the end of in vitro rooting phase, T2 persistent leaves from plants after 30 days of acclimatization, T3 - new leaves from plants after 30 days of acclimatization (transition leaves). T4 - transition leaves from plants after 60 days, T5 - new leaves from plants after 60 days of acclimatization, and T6 - new leaves from plants after 120 days of acclimatization. A higher degree of differentiation and, thereby, better adaptation took place in leaves from leaf primordial differentiated in ex vitro conditions. The acclimatization phase is crucial for a greater thickness and differentiation of spongy and palisade parenchyma, and to correct the modifications of plants developed in vitro. The study of leaf anatomy provides a better understanding of alterations occurring in micropropagated banana plants.
Resumo:
Under physiological conditions, elderly people present memory deficit associated with neuronal loss. This pattern is also associated with Alzheimer`s disease but, in this case, in a dramatically intensified level. Kinin receptors have been involved in neurodegeneration and increase of amyloid-beta concentration, associated with Alzheimer`s disease (AD). Considering these findings, this work evaluated the role of kinin receptors in memory consolidation during the aging process. Male C57BI/6 (wt), knock-out B1 (koB1) or B2 (koB2) mice (3, 6, 12 and 18-month-old - mo; n = 10 per group) were submitted to an acquisition session, reinforcement to learning (24 h later: test 1) and final test (7 days later: test 2), in an active avoidance apparatus, to evaluate memory. Conditioned avoidance responses (CAR, % of 50 trials) were registered. In acquisition sessions, similar CAR were obtained among age matched animals from all strains. However, a significant decrease in CAR was observed throughout the aging process (3mo: 8.8 +/- 2.3%; 6mo: 4.1 +/- 0.6%; 12mo: 2.2 +/- 0.6%, 18mo: 3.6 +/- 0.6%, P < 0.01), indicating a reduction in the learning process. In test 1, as expected, memory retention increased significantly (P < 0.05) in all 3- and 6-month-old animals as well as in 12-month-old-wt and 12-month-old-koB1 (P < 0.01), compared to the training session. However, 12-month-old-koB2 and all 18-month-old animals did not show an increase in memory retention. In test 2, 3- and 6-month-old wt and koB1 mice of all ages showed a significant improvement in memory (P < 0.05) compared to test 1. However, 12-month-old wt and koB2 mice of all ages showed no difference in memory retention. We suggest that, during the aging process, the B1 receptor could be involved in neurodegeneration and memory loss. Nevertheless, the B2 receptor is apparently acting as a neuroprotective factor. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to validate the Piper Fatigue Scale-Revised (PFS-R) for use in Brazilian culture. Translation of the PFS-R into Portuguese and validity and reliability tests were performed. Convenience samples in Brazil we as follows: 584 cancer patients (mean age 57 +/- 13 years; 51.3% female); 184 caregivers (mean age 50 +/- 12.7 years; 65.8% female); and 189 undergraduate nursing students (mean age 21.6 +/- 2.8 years; 96.2% female); Instruments used were as follows: Brazilian PFS, Beck Depression Inventory (BDI), and Karnofsky Performance Scale (KPS). The 22 items of the Brazilian PFS loaded well (factor loading > 0.35) on three dimensions identified by factor analysis (behavioral, affective, and sensorial-psychological). These dimensions explained 65% of the variance. Internal consistency reliability was very good (Cronbach`s alpha ranged from 0.841 to 0.943 for the total scale and its dimensions). Cancer patients and their caregivers completed the Brazilian PFS twice for test-retest reliability and results showed good stability (Pearson`s r a parts per thousand yenaEuro parts per thousand 0,60, p < 0,001). Correlations among the Brazilian PFS and other scales were significant, in hypothesized directions, and mostly moderate contributing to divergent (Brazilian PFS x KPS) and convergent validity (Brazilian PFS x BDI). Mild, moderate, and severe fatigue in patients were reported by 73 (12.5%), 167 (28.6%), and 83 (14.2%), respectively. Surprisingly, students had the highest mean total fatigue scores; no significant differences were observed between patients and caregivers showing poor discriminant validity. While the Brazilian PFS is a reliable and valid instrument to measure fatigue in Brazilian cancer patients, further work is needed to evaluate the discriminant validity of the scale in Brazil.
Resumo:
This study tested the concurrent and construct validity of a newly developed OMNI-Kayak Scale, testing 8 male kayakers who performed a flatwater load-incremented ""shuttle"" test over a 500-m course and 3 estimation-production trials over a 1,000-m course. Velocity, blood lactate concentration, heart rate, and rating of perceived exertion (RPE), using the OMNI-Kayak RPE Scale and the Borg 6-20 Scale were recorded. OMNI-Kayak Scale RPE was highly correlated with velocity, the Borg 6-20 Scale RPE, blood lactate, and heart rate for both load-incremented test (rs=.87-.96), and estimation trials (rs=.75-.90). There were no significant differences among velocities, heart rate and blood lactate concentration between estimation and production trials. The OMNI-Kayak RPE Scale showed concurrent and construct validity in assessing perception of effort in flatwater kayaking and is a valid tool for self-regulation of exercise intensity.