950 resultados para ultra short pulse
Resumo:
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed,
showing improvements in the directionality and flux of the laser-driven neutron beams.
Resumo:
Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.
Resumo:
Introduction: Oesophageal adenocarcinoma has increased dramatically in incidence over the past three decades with a particularly high burden of disease at the gastro-oesophageal junction. Many cases occur in individuals without known gastro-oesophageal reflux disease and in the absence of Barrett’s oesophagus suggesting that mechanisms other than traditional reflux may be important. Distal squamous mucosa may be prone to acid damage even in the absence of traditional reflux by the mechanism of distal opening of the lower oesophageal sphincter. This is splaying of the distal segment of lower oesophageal sphincter allowing acid ingress without traditional reflux. It has been suggested that the cardiac mucosa at the gastro-oesophageal junction, separating oesophageal squamous mucosa and acid secreting columnar mucosa of the stomach may be an abnormal mucosa arising as a consequence of acid damage. By this theory the cardiac mucosa is metaplastic and akin to ultra-short Barrett’s oesophagus. Obesity is a known risk factor for adenocarcinoma at the gastro-oesophageal junction and its rise has paralleled that of oesophageal cancer. Some of this excess risk undoubtedly operates through stress on the gastro-oesophageal junction and a predisposition to reflux. However we sought to explore the impact of obesity on the gastro-oesophageal junction in healthy volunteers without reflux and in particular to determine the characteristics of the cardiac mucosa and mechanisms of reflux in this group. Methods: 61 healthy volunteers with normal and increased waist circumference were recruited. 15 were found to have a hiatus hernia during the study protocol and were analysed separately. Volunteers had comprehensive pathological, physiological and anatomical assessments of the gastro-oesophageal junction including endoscopy with biopsies, MRI scanning before and after a standardised meal, prolonged recording of pH and manometry before and after a meal and screening by fluoroscopy to identify the squamo-columnar junction. In the course of the early manometric assessments a potential error associated with the manometry system recordings was identified. We therefore also sought to document and address this on the benchtop and in vivo. Key Findings: 1. In documenting the behaviour of the manoscan we described an immediate effect of temperature change on the pressure recorded by the sensors; ‘thermal effect’ and an ongoing drift of the recorded pressure with time; ‘baseline drift’. Thermal effect was well compensated within the standard operation of the system but baseline drift not addressed. Applying a linear correction to recorded data substantially reduced the error associated with baseline drift. 2. In asymptomatic healthy volunteers there was lengthening of the cardiac mucosa in association with central obesity and age. Furthermore, the cardiac mucosa in healthy volunteers demonstrated an almost identical immunophenotype to non-IM Barrett’s mucosa, which is considered to arise by metaplasia of oesophageal squamous mucosa. These findings support the hypothesis that the cardia is metaplastic in origin. 3. We have demonstrated a plausible mechanism of damage to distal squamous mucosa in association with obesity. In those with a large waist circumference we observed increased ingress of acid within but not across the lower oesophageal sphincter; ‘intrasphincteric reflux’ 4. The 15 healthy volunteers with a hiatus hernia were compared to 15 controls matched for age, gender and waist circumference. Those with a hiatus hernia had a longer cardiac mucosa and although they did not have excess traditional reflux they had excess distal acid exposure by short segment acid reflux and intrasphincteric acid reflux. Conclusions: These findings are likely to be relevant to adenocarcinoma of the gastro-oesophageal junction
Resumo:
In this paper we present the various design issues related to CRLH-Transmission lines for the generation of short duration Ultra-Wideband chirped-pulse. The major parameters of the CRLH Transmission lines affecting the BandWidth are discussed and methods to increase BandWidth are also suggested. Also presented is the role of components of CRLH Transmission lines in determining the chirp duration. The techniques of controlling the chirp duration by regulating these components are also discussed. Simulations results are also included.
Resumo:
The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.
Resumo:
We have demonstrated a compact and an efficient passively Q-switched microchip Nd:YVO4 laser by using a composite semiconductor absorber as well as an output coupler. The composite semiconductor absorber was composed of an LT (low-temperature grown) In0.25Ga0.75As absorber and a pure GaAs absorber. To our knowledge, it was the first demonstration of the special absorber for Q-switching operation of microchip lasers. Laser pulses with durations of 1.1 ns were generated with a 350 mu m thick laser crystal and the repetition rate of the pulses was as high as 4.6 MHz. The average output power was 120 mW at the pump power of 700 mW. Pulse duration can be varied from 1.1 to 15.7 ns by changing the cavity length from 0.45 to 5 mm. Pulses with duration of 1.67 and 2.41 ns were also obtained with a 0.7 mm, thick laser crystal and a 1 mm thick laser crystal, respectively. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The transient optical nonlinearity of a nematic liquid crystal doped with azo-dye DR19 is examined. The optical reorientation threshold of a 25-mu m-thick planar-aligned sample of 5CB using a 50 ns pulse duration 532 nm YAG laser pulse is observed to decrease from 800 mJ/mm(2) to 0.6 mJ/mm(2) after the addition of 1 vol% azo dopant, a reduction of three orders of magnitude. When using a laser pulse duration of 10 ns, no such effect is observed. Experimental results indicate that the azo dopant molecules undergo photoisomerization from trans-isomer to cis-isomer under exposure to light, and this conformation change reorients the 5CB molecules via intermolecular coupling between guest and host. This guest-host coupling also affects the azo photoisomerization process.