947 resultados para trapping effort
Resumo:
The successful development and optimisation of optically-driven micromachines will be greatly enhanced by the ability to computationally model the optical forces and torques applied to such devices. In principle, this can be done by calculating the light-scattering properties of such devices. However, while fast methods exist for scattering calculations for spheres and axisymmetric particles, optically-driven micromachines will almost always be more geometrically complex. Fortunately, such micromachines will typically possess a high degree of symmetry, typically discrete rotational symmetry. Many current designs for optically-driven micromachines are also mirror-symmetric about a plane. We show how such symmetries can be used to reduce the computational time required by orders of magnitude. Similar improvements are also possible for other highly-symmetric objects such as crystals. We demonstrate the efficacy of such methods by modelling the optical trapping of a cube, and show that even simple shapes can function as optically-driven micromachines.
Resumo:
It is often assumed that foreign MNEs are the driving force behind technological development in developing economies but it has become evident in recent years that the actions of MNEs in isolation from the domestic economy. The study, therefore, examines the determinants of local firms' decisions to undertake technological effort, not only in isolation, but also in the context of linkages between domestic firms and MNEs. There is evidence that linkages between MNEs and local firms are important in explaining technological effort by local firms but direct technological assistance from MNEs does not seem to play a major role in fostering increased technological effort by local firms.
Resumo:
The purpose of this research is to explore the disparity between the existing model-orientated bioenergy decision support system (DSS) functions and what is desired by practitioners, in particular bioenergy project developers. This research has compiled the published bioenergy project development models, to highlight the characteristics emphasised by academics. When contrasted against a UK practitioner’s perspective through the administration of a Likert style questionnaire, it is clear that the general DSS issues still persist. Finally, the research suggests how this ’theory-practice’ divide could be addressed. The research contribute
Resumo:
A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X -band electron paramagnetic resonance spectroscopy. © 2010 American Institute of Physics.
Resumo:
Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.
Resumo:
Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140º and rounded tip area as small as 10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M2=18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of 11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160º axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
In this paper, we demonstrate, for the first time to the best of our knowledge, utilization of Bessel beams generated from a semiconductor laser for optical trapping and manipulation of microscopic particles including living cells. © 2014 OSA.
Resumo:
2000 Mathematics Subject Classification: 35B40, 35L15.
Resumo:
In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.
Resumo:
Homogenous secondary pyrolysis is category of reactions following the primary pyrolysis and presumed important for fast pyrolysis. For the comprehensive chemistry and fluid dynamics, a probability density functional (PDF) approach is used; with a kinetic scheme comprising 134 species and 4169 reactions being implemented. With aid of acceleration techniques, most importantly Dimension Reduction, Chemistry Agglomeration and In-situ Tabulation (ISAT), a solution within reasonable time was obtained. More work is required; however, a solution for levoglucosan (C6H10O5) being fed through the inlet with fluidizing gas at 500 °C, has been obtained. 88.6% of the levoglucosan remained non-decomposed, and 19 different decomposition product species were found above 0.01% by weight. A homogenous secondary pyrolysis scheme proposed can thus be implemented in a CFD environment and acceleration techniques can speed-up the calculation for application in engineering settings.